L'abscisse du point B est égale à 2. L'abscisse du point C est égale à 0.
Abscisse. Sur une droite graduée, l'abscisse d'un point est le nombre qui permet de repérer la position de ce point sur la droite. Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal.
Coordonnée horizontale permettant de définir la position horizontale d'un point dans un plan ou sur une droite orientée. L'axe des abscisses et l'axe des ordonnées permettent de placer un point sur un repère. Exemple : Abscisse à l'origine, abscisse curviligne.
"Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
En langage mathématique, l'abscisse à l'origine est la valeur de x lorsque f(x)=0! Donc si tu as la fonction f(x) = 2x + 16, chercher l'abscisse à l'origine signifie de chercher la valeur de x pour laquelle 0= 2x + 16.
L'axe vertical d'un plan cartésien se nomme l'axe des ordonnées, ou l'axe des y . Cet axe gradué est orienté du bas vers le haut du plan cartésien. On y indique la valeur de la variable dépendante dans une relation entre deux variables.
Lecture graphique d'images et d'antécédents. Méthode L'axe des abscisses est l'axe horizontal, l'axe des ordonnées est l'axe vertical. On lit les antécédents sur l'axe des abscisses et les images sur l'axe des ordonnées.
On appelle image de x par f le nombre f(x). On appelle antécédent de y le nombre x telle que f(x) = y.
Une abscisse, toujours au féminin.
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.
On utilisera un repère constitué des trois axes Ox, Oy et Oz, qui délimitent trois plans. Dans ce système de coordonnées cartésien, un point de l'espace sera noté ( x ; y ; z ).
Repérer une fraction sur une demi-droite graduée
À partir de l'unité de longueur d'une demi-droite graduée, on peut définir une graduation avec des nombres entiers, décimaux ou avec des fractions. Sur une demi-droite graduée, le nombre associé à un point est appelé abscisse de ce point.
On trace une droite verticale à partir de l'antécédent dont on veut trouver l'image. On note l'unique intersection entre cette droite et le graphe de f. On trace une droite horizontale en ce point. L'intersection de cette droite avec l'axe des ordonnées nous donne l'image recherchée.
Le méridien de Greenwich est le méridien qui sert de référence internationale de longitude, d'où son nom de « méridien origine ».
Pour déterminer l'abscisse du point d'intersection avec l'axe des abscisses, il faut trouver la valeur de x pour laquelle y = 0 y=0 y=0 . Pour déterminer l'ordonnée du point d'intersection avec l'axe des ordonnées, il faut trouver la valeur de y pour laquelle x = 0 x=0 x=0 .
Le seul antécédent de 4 par f est -2.
Le seul antécédent de 8 par la fonction f est donc x = 4.
Gauche-droite, haut-bas, et avant-arrière. Ces trois dimensions, ou axes, s'appellent généralement X, Y et Z. Ces axes nous servent à naviguer dans notre monde virtuel en 3D. Ils permettent de mesurer la position des objets, leur taille ou encore la distance qui les sépare.
Repérage dans l'espace
x est l'abscisse de A, y est son ordonnée et z est sa cote. La droite sur laquelle on lit les abscisses des points est appelée axe des abscisses, celle sur laquelle on lit les ordonnées des points est appelée axe des ordonnées et celle sur laquelle on lit les cotes est appelée axe des cotes.
La plus petite abscisse possible pour un point de Cf est –5 tandis que la plus grande abscisse possible est 6 : f est donc définie sur l'intervalle [–5 ; 6].
Les nombres de la première ligne représentent les abscisses des points, ceux de la seconde représentent les ordonnées.
L'expression « abscisse à l'origine » désigne parfois aussi chacun des points du graphique d'une fonction où celui-ci coupe l'axe des abscisses. Il s'agit des points dont l'abscisse est zéro. Les abscisses de ces points s'appellent aussi les zéros de la fonction f.