Dans un triangle rectangle, on appelle le cosinus d'un angle aigu le quotient de la mesure de la longueur du côté adjacent à cet angle par celle de l'hypoténuse du triangle.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
Le rapport trigonométrique sinus ne s'utilise qu'avec les angles aigus d'un triangle rectangle. Ainsi, on ne cherche jamais le sinus à partir de l'angle droit.
Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Sinus = Opposé/Hypoténuse ; Cosinus = Adjacent/Hypoténuse ; Tangente = Opposé/Adjacent.
Si sin \hat{b} = 0,2, alors \hat{b} = 12° (arrondi au degré).
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Les différents types d'angles
L'origine, souvent noté O, est appelé le sommet de l'angle et les demi-droites sont appelées les côtés de l'angle. On mesure l'angle en degrés (noté °).
sin (angle) = (côté opposé à l'angle) divisé par (hypoténuse). cos (angle) = (côté adjacent à l'angle) divisé par (hypoténuse). tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle).
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
Calculer les angles d'un triangle ABC : la règle des 180°
Si l'on prend un triangle ABC, dont A, B et C représentent chacun des 3 sommets, on constate cette fois que s'applique la règle des 180° : celle-ci signifie que la somme des angles d'un triangle sera toujours égale à 180°.
Dans le cas où l'angle est négatif, le point est à placer dans le sens indirect au cercle trigonométrique. Pour placer plus facilement vos points, vous pouvez tout à fait les convertir en degrés. La valeur en degré est obtenue avec la formule suivante : d = (x × 180) / π.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
La loi des cosinus est une formule qui permet de trouver la mesure d'un côté ou d'un angle dans un triangle quelconque. Elle est donc valable pour tous les triangles.
En mathématiques, un angle obtus est un angle saillant dont la mesure est strictement supérieure à celle de l'angle droit, autrement dit un angle dont la mesure en degrés est comprise entre 90° exclu et 180° (soit entre π/2 exclu et π radians ).
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Dans un triangle quelconque, relation qui permet d'établir que le carré d'un côté est égal à la somme des carrés des deux autres côtés moins deux fois le produit de ces côtés par le cosinus de l'angle qu'ils forment. Dans le triangle ABC ci-dessous, la loi du cosinus prend les trois formes suivantes : a2=b2+c2–2bccosα
Pour retenir les trois principales fonctions trigonométriques, vous pouvez mémoriser « soh cah toa » pour sinus = opposé sur hypoténuse (soh), cosinus = adjacent sur hypoténuse (cah)et tangente = opposé sur adjacent (toa).
Le sinus de 30 degrés est égal à 0,5.
ACD ! = ADC ! . La somme des angles à la base est égale : 180 – 54 = 126°.