PGCD(69 ;1150 ; 4140) = 23. Il y a 23 marins.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
Le PGCD de deux nombres entiers, non nuls tous les deux, est le plus grand des diviseurs communs de ces deux nombres. Si a et b sont les deux nombres entiers, on note leur PGCD ainsi : PGCD(a;b). PGCD est l'abréviation pour "Plus Grand Commun Diviseur".
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
2) 756 441 n'est donc pas irréductible. On calcule le PGCD de 756 et 441 (ce sera un multiple de 3) ; il s'agit de 63.
Donc les diviseurs communs à 24 et 42 sont 1, 2, 3 et 6.
162 = 2 × 81 = 2 × 9 × 9=2 × 32 × 32 = 2 × 34. 108 = 2 × 54 = 2 × 2 × 27 = 22 × 33. 2. Les diviseurs communs à 162 et 108 sont : 1 ; 2 ; 3 ; 6 ; 9 ; 18 ; 27 et 54.
Quel est le plus grand diviseur commun de 52, 84, 108 et 140 ? 13.
b. Les diviseurs de 125 sont : 1 — 5 — 25 et 125. Les diviseurs de 175 sont : 1 — 5 — 7 — 25 — 35 et 175.
561÷357 (à la calculatrice touche ÷R) on obtient 1 en quotient et 204 en reste. Après, on continue : On divise le plus petit des deux nombres de la division précédente par le reste de cette division. --> Le dernier reste non nul est 51 donc PGCD (357 ; 561) = 51.
Diviseurs de 24 : 1, 2, 3, 4, 6, 8, 12, 24 et leurs opposés. Diviseurs de 60 : 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30, 60 et leurs opposés. Diviseurs communs de 24 et 60 : 1, 2, 3, 4, 6, 12 et leurs opposés. Le plus grand de ces diviseurs est 12.
4) Par conséquent, le PGCD de 168 et 86 est 2.
6 est le PGCD de 18 et 24.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 .
Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36.
Les diviseurs communs à 210 et 350 sont : 1, 2, 5, 7, 35 et 70. d. Le PGCD de 210 et 350 est 70.
2/ PGCD (156; 130) = 26. Les diviseurs communs de deux nombres sont tous les diviseurs du plus grand commun diviseur (PGCD).
Méthode d'Euclide
La recherche du PGCD par la méthode des divisions euclidiennes est la conséquence du lemme d'Euclide. Lemme d'Euclide : soit un couple d'entiers naturels non nuls (a,b), si des entiers naturels q et r, avec r ≠ 0, sont tels que a = bq + r , alors : PGCD(a,b) = PGCD(b,r).
Le nombre 588 peut se décomposer sous la forme 588 = 22 × 3 × 72.
Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 18 ; 24 ; 36 ; 72. ... Diviseurs communs de 36 et 48 ...
Pour décomposer un nombre, on donne la valeur de chaque chiffre du nombre. Il y a plusieurs types de décomposition : la décomposition « additive » ( = utilisation de l'addition) 33545 = 30 000 + 3 000 + 500 + 40 + 5.
Le plus grand de ces diviseurs est 18. On note : PGCD(72, 54) = 18.
✓ Cherchons tous les autres diviseurs communs de 36 et 54. Les diviseurs de 36 sont : Les diviseurs de 54 sont : Donc les diviseurs communs à 36 et 54 sont : 1 ; 2 ; 3 ; 6 ; 9 et 18. ✓ Le PGCD de 36 et 54 est donc 18.
Réponse. Et le diviseur commun de 80 et 100 est 10 car un entier est divisible par 10 si le chiffre de ses unités est 0 donc le diviseur commun est bien 10.