Les facteurs pour 180 sont 1,2,3,4,5,6,9,10,12,15,18,20,30,36,45,60,90,180 1 , 2 , 3 , 4 , 5 , 6 , 9 , 10 , 12 , 15 , 18 , 20 , 30 , 36 , 45 , 60 , 90 , 180 . Les facteurs pour 180 180 sont tous les nombres compris entre 1 1 et 180 180 , qui divisent parfaitement 180 180 .
Les diviseurs de 270 sont 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 27 ; 30 ; 45 ; 54 ; 90 ; 135 ; 270 les diviseurs de 180 sont 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 9 ; 10 ; 12 ; 15 ; 18 ; 20 ; 30 ; 36 ; 45 ; 60 ; 90 ; 180.
Les diviseurs de 108 sont 1, 2, 3, 4, 6, 9, 12, 18, 27, 36, 54 et 108. Les diviseurs de 60 sont 1, 2, 3, 4, 5, 6, 10, 12, 15, 20, 30 et 60. Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
5. Calculer le PPCM. Le plus petit commun multiple est le produit de tous les facteurs dans le plus grand nombre de leur occurrence. Le plus petit commun multiple de 180, 200 et 240 est 3600.
Méthode 2 : le tableau des diviseurs premiers
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers. Cette méthode est plus rapide et efficace lorsque l'on cherche le PGCD entre deux grands nombres.
On effectue la division euclidienne du plus grand par le plus petit et on recommence avec le diviseur et le reste, jusqu'à ce que le reste soit nul. Le PGCD est alors le dernier reste non nul.
Ceux de 18 sont 1, 2, 3, 6, 9 et 18. Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
PGCD : le plus grand commun diviseur
Par exemple : 120 = 23 x 3 x 5 et 3920 = 24 x 5 x 72 Ces décompositions ont en commun : 23 et 5 Donc le PGCD de 120 et 3920 est 23 x 5, soit 40. Que l'on peut noter : PGCD(120;3920) = 40.
60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24. Deuxième exemple qui sert de guide pour la démonstration générale.
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
- Le PGCD de a et de b est le produit des facteurs premiers communs aux deux décompositions affectés de leur plus petit exposant. - Le PPCM de a et b est égal au produit de tous les facteurs premiers des deux décompositions affectés de leur plus grand exposant.
Les multiples de 18 sont : 0, 18, 36, 54, 72, 90, 108, etc. Les multiples de 45 sont : 0, 45, 90, 135, etc.
Les nombres divisibles par 9 sont : 144 (1 + 4 + 4 = 9) ; 405 (4 + 5 = 9) ; 81 ; 180 ; 153 ; 117 ; 270.
Diviseurs de 108 : {1; 2; 3; 4; 6; 9; 12; 18; 27; 36; 54; 108}.
Calcul du PGCD de 144 et 252 à l'aide de l'algorithme d'Euclide : 252 = 144 1 + 108 d'où PGCD(252 ; 144) = PGCD(144 ; 108) 144 = 108 1 + 36 d'où PGCD(144 ; 108) = PGCD(108 ; 36) 108 = 36 3 + 0 d'où PGCD(108 ; 36) = 36. Donc PGCD(144 ; 252) = 36.
Donc, le PGCD de 126 et 210 est 42 et non 1.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18.
180 a des facteurs de 2 et 90 . 90 a des facteurs de 2 et 45 . 45 a des facteurs de 3 et 15 . 15 a des facteurs de 3 et 5 .
Le PGCD de 25 et 100 est 25.