56=2×2×2×7=2³×7. 84=2×2×3×7=2²×3×7. 140=2×2×5×7=2²×5×7. Leur PGCD est donc 2²×7 soit 28.
Détermination pratique du pgcd
60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24. Deuxième exemple qui sert de guide pour la démonstration générale.
72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
Exemple Les diviseurs de 48 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 12 ; 16 ; 24 ; 48 . Les diviseurs de 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ;12 ; 18 ; 24 ; 36 ; 72. Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 . Le PGCD de 48 et 72 est donc : 24 .
36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24. Définition : Si a et b désignent deux nombres entiers, on note PGCD (a ; b) le plus grand des diviseurs positifs à a et b.
D'après la première partie, 18 est le plus grand commun diviseur de 90 et 126 donc elle pourra réaliser au maximum 18 bouquets.
Un tel entier existe bien, et il en existe un seul vérifiant ces trois propriétés qui est le PGCD au sens de la définition précédente quand (a,b) ≠ (0,0). Avec cette définition PGCD(0,0)=0.
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
On divise le plus petit des deux nombres de la division précédente par le reste de cette division. --> Le dernier reste non nul est 51 donc PGCD (357 ; 561) = 51. Remarque: Pour les grands nombres (supérieurs à 100 par exemple), l'algorithme d'Euclide est la méthode la plus rapide en général.
Rappel sur le PGCD
On a vu en classe de 3ème que le PGCD de deux nombres a et b est le plus grand nombre qui divise à la fois a et b. Par exemple, le PGCD de 15 et 10 est 5. Pour déterminer le PGCD de deux nombres, on peut faire une liste des diviseurs de a puis de b et déterminer le plus grand diviseur commun.
1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72. Les diviseurs de 54 sont : 1, 2, 3, 6, 9, 18 et 27. Les diviseurs communs à 72 et 54 sont donc : 1, 2, 3, 6, 9, et 18.
utilise le pgcd quand on s'occupe des diviseurs communs à ces nombres et qu'on est amené à chercher le plus grand de ces diviseurs. Le PGCD de différents nombres est un diviseur de chacun des nombres et est donc toujours inférieur ou égal à chacun des nombres.
En mathématiques
Le nombre 360 a pour décomposition en produit de facteurs premiers 2×2×2×3×3×5 ainsi, il possède 24 diviseurs et, comme il est le plus petit entier à en avoir autant c'est un nombre hautement composé.
Le PGCD est le produit des facteurs communs aux deux nombres (ceux en rouge) donc 2 x 2 x 3 = 12. Le PPCM est le produit du PGCD par le reste des facteurs non communs (en noir) donc 12 x 3 x 7 = 252. 2) Nombres premiers entre eux : Ce sont des nombres qui ont un et un seul diviseur commun : 1.
Diviseurs de 90 : 1 ; 2 ; 3 ; 5 ; 6 ; 9 ; 10 ; 15 ; 18 ; 30 ; 45 ; 90 (idem). Qu'est-ce que c'est ? Soient a et b deux entiers positifs. Le PGCD de a et b, noté pgcd(a; b), est le plus grand diviseur commun à a et à b (il divise a et b à la fois.)
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
756 = 2² x 3 x 3² x 7 ; 441 = 3² x 7 x 7 . Le PGCD est donc 3² x 7 = 9 x 7 = 63 .
Pour calculer le triple d'un nombre, il faut le multiplier par 3. Le triple de 4 est : 4 × 3 = 12.
PGCD (84 ; 270) = 6.
On dit que deux nombres sont premiers entre eux lorsqu'ils n'ont que 1 comme diviseur commun.
Le plus grand diviseur commun à 125 et 175 est 25.
Les diviseurs de 45 sont 1 ; 3 ; 5 ; 9 ; 15 ; 45 les diviseurs de 64 sont 1 ; 2 ; 4 ; 8 ; 16 ; 32 ; 64. Le diviseur commun de 45 et 64 est donc 1. Le plus grand diviseur commun aux deux nombres est 1.
7, 14, 21, 28, 35, 42, 49, 56, 63, 70, … 8, 16, 24, 32, 40, 48, 56, 64, 72, 80, … 9, 18, 27, 36, 45, 54, 63, 72, 81, 90, … 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, …
Le PGCD de deux nombres entiers, non nuls tous les deux, est le plus grand des diviseurs communs de ces deux nombres. Si a et b sont les deux nombres entiers, on note leur PGCD ainsi : PGCD(a;b). PGCD est l'abréviation pour "Plus Grand Commun Diviseur".