72 = 24*3 + 0 Le PGCD de 72 et 24 est 24.
Pour cela, on énumère les diviseurs de chacun de ces nombres, puis on extrait les nombres qui figurent dans les deux listes à la fois et on prend le plus grand. Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36 et 72.
Les diviseurs communs à 48 et 72 sont : 1 ; 2 ; 3 ; 4 ; 6 ; 8 ; 9 ; 12 ; 24 . Le PGCD de 48 et 72 est donc : 24 . On note : PGCD(48 ; 72) = 24. * Si le PGCD de deux entiers naturels a et b est égal à 1, on dit que a et b sont premiers entre eux.
Présentation. Le plus grand d'entre eux est 12. On l'appelle donc le plus grand commun diviseur(P.G.C.D) de 24 et 36. 1er cours offert !
Si deux nombres entiers n'ont aucun diviseur commun autre que 1, alors leur pgcd est égal à 1 ; on dit que ces nombres sont premiers entre eux. Quand on divise deux nombres entiers par leur pgcd, on obtient deux nombres premiers entre eux.
Détermination pratique du pgcd
60 = 24 × 2 + 12 et 24 = 2 × 12, donc 12 est le pgcd de 60 et 24. Deuxième exemple qui sert de guide pour la démonstration générale.
40 = 23 × 5.
Pour trouver le PGCD de deux petits nombres on peut faire la liste de tous leurs diviseurs. Prenons par exemple 18 et 27 : Les diviseurs de 18 sont : 1, 2, 3, 6, 9, 18. Les diviseurs de 27 sont : 1, 3, 9, 27.
18 n'est pas une fraction irréductible car 12 et 18 ne sont pas des nombres premiers entre eux. On peut donc la simplifier : ´ PGCD(12; 18) = 6.
6 est le PGCD de 18 et 24.
Méthode d'Euclide
La recherche du PGCD par la méthode des divisions euclidiennes est la conséquence du lemme d'Euclide. Lemme d'Euclide : soit un couple d'entiers naturels non nuls (a,b), si des entiers naturels q et r, avec r ≠ 0, sont tels que a = bq + r , alors : PGCD(a,b) = PGCD(b,r).
72 a des facteurs de 2 et 36 . 36 a des facteurs de 2 et 18 . 18 a des facteurs de 2 et 9 . 9 a des facteurs de 3 et 3 .
Les diviseurs de 48 sont : 1, 2, 3, 4, 6, 8, 12, 16, 24, 32, 48. Les diviseurs de 72 sont : 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72.
72 est un multiple de 9 , car 72 = 9 X . 42 est un multiple de 7 , car 42 = 7 X . 56 est un multiple de 8 , car 56 = 8 X . 81 est un multiple de 9 , car 81 = 9 X .
1) Calculer le PGCD des nombres 135 et 210. Algorithme d'Euclide 210 = 135 x 1 + 75 135 = 75 x 1 + 60 75 = 60 x 1 + 15 60 = 15 x 4 + 0 Le dernier reste non nul est 15, donc PGCD (135 ; 210) = 15.
PGCD(110 ; 88) = 22
Super !
Les diviseurs communs de 30 et 18 étant 1, 2, 3 et 6, leur PGCD est 6. Ce qui se note : PGCD(30, 18) = 6. Les diviseurs communs à plusieurs entiers sont les diviseurs de leur PGCD.
Prenons un exemple avec 108 et 60.
Les diviseurs communs de 60 et de 108 sont donc 1, 2, 3, 4, 6 et 12. Ainsi, on a PGCD(108;60) = 12.
Le plus grand des diviseurs commun à 12 et 30 est 6 donc PGCD(12 ; 30) = 6. Remarque : il existe d'autres méthodes de détermination du PGCD de deux nombres entiers plus efficaces, notamment la méthode des soustractions successives et l'algorithme d'Euclide qui sont détaillées dans la fiche suivante.
Par exemple, les diviseurs communs à 36, 48 et 60 sont 1, 2, 3, 4, 6 et 12 donc PGCD(36, 48, 60) = 12.
Une fois que l'on a la liste des diviseurs de chaque nombre, on ne garde que ceux qui apparaissent dans les deux listes (c'est-à-dire les diviseurs COMMUNS). Il suffit ensuite de prendre le plus grand : c'est le PGCD. Le plus grand est 8, donc le pgcd de 16 et 24 est 8 !
Il s'agissait de considérer l'ensemble E des diviseurs de 210 (16 éléments) : l, 2, 3, 5, 6, 7, 10, 14, 15, 21, 30, 35, 42, 70, 105, 210.
il suffit de trouver les diviseurs du PGCD(15;20). Donc les diviseurs communs à 15 et 20 sont -5;-1;1;5. Pour trouver le PGCD de 3 entiers, On cherche le PGCD de 2 d'entre eux, que l'on note D.