Ces deux définitions coexistent encore aujourd'hui. Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
« Très bien », ai-je commenté, « la définition complète est donc : Définition 2 : Un nombre naturel est premier s'il est plus grand que 1 et qu'il n'est divisible que par 1 et par lui-même. »
La suite des nombres naturels est : N = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, …}. Le nombre 0 est un nombre naturel. L'ensemble des nombres naturels est un ensemble infini. L'ensemble des nombres naturels est un ensemble fermé pour les opérations d'addition et de multiplication.
C'est le nombre "GOOGOL". Ce mathématicien américain, Edward Kasner, a appelé le nombre "Googol" (il a demandé à son tout petit neuveu qui a dit "Googol" un peu au hasard). C'est ce nombre-là qui a donné son nom au fameux moteur de recherche "Google" qu'on utilise sur internet...
Mille milliards, c'est-à-dire un million de millions ou 10 puissance 12.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Selon cette définition, les nombres 0 et 1 ne sont donc ni premiers ni composés : 1 n'est pas premier car il n'a qu'un seul diviseur entier positif et 0 non plus car il est divisible par tous les entiers positifs.
Les nombres naturels, représentés par N, regroupent tous les nombres entiers compris entre 0 inclusivement et l'infini positif. On utilise parfois l'appellation nombres entiers naturels pour désigner cet ensemble. Les nombres naturels représentent tous les nombres entiers positifs.
Pour trouver le plus petit nombre gentil, il faut prendre le produit des nombres premiers (1 2 3 5 7) avec l'exposant le plus élevé, donc pour 2 2² et 2³, on choisira 2³. On a donc 1 * 2³ * 3² * 5 * 7 = 2520. Donc le plus petit nombre gentil est 2520.
Selon les acceptions, la liste des entiers naturels est donc : 1 ; 2 ; 3 ; 4 ; 5 ; 6 ; 7 ; 8 ; 9 ; 10 ; 11 ; …
2 est un nombre premier car il n'est divisible que par 1 (2 ÷ 1 = 2) et par lui-même (2 ÷ 2 = 1) ; 4 n'est pas un nombre premier car il admet 3 diviseurs : 1, 2 et 4 ; 123 n'est pas un nombre premier, car il est divisible par 3. La division de 123 par 3 donne un quotient de 41, sans reste.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale. On doit cette performance (la vérification est en cours) au Gimps, le Great Internet Mersenne Prime Search.
Zéro est un nombre pair. Déterminer la parité d'un nombre entier relatif c'est dire s'il est pair ou impair. La façon la plus simple de prouver que zéro est pair c'est de vérifier qu'il correspond à la définition : en effet, c'est un entier multiple de 2.
Nombre de chiffres de 4
4 est un nombre à un seul chiffre, puisqu'il est strictement inférieur à 10 ; 4 est d'ailleurs lui-même un chiffre.
Un nombre naturel est un nombre qui existe de manière courante et évidente dans la nature. Par conséquent, c'est un nombre entier non négatif. L'ensemble des nombres naturels, représentés par N, peut être défini de l'une ou l'autre des deux manières suivantes : N = {0, 1, 2, 3, ...}
Le nombre 11 (onze) est l'entier naturel qui suit 10 et qui précède 12.
Le nombre 9 n'est pas un nombre premier, car il a plus de deux diviseurs : div (9) = {1, 3, 9}.
Par conséquent : 63 est multiple de 1. 63 est multiple de 3. 63 est multiple de 7.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.