Un test statistique permet d'évaluer à quel point les données vont à l'encontre d'une certaine hypothèse, l'hypothèse nulle aussi appelée H0. Sous H0, les données sont générées par le hasard. En d'autres termes, les processus contrôlés (manipulations expérimentales par exemple) n'ont pas d'influence sur les données.
Les tests statistiques permettent de contrôler la validité d'une hypothèse émise sur une population-mère, à partir des observations effectuées sur un échantillon. L'hypothèse ainsi énoncée est appelée hypothèse nulle ou H0.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
L'analyse statistique consiste donc à collecter et à interpréter des données dans le but d'identifier des modèles et des tendances.
Un test statistique permet d'évaluer à quel point les données vont à l'encontre d'une certaine hypothèse, l'hypothèse nulle aussi appelée H0. Sous H0, les données sont générées par le hasard. En d'autres termes, les processus contrôlés (manipulations expérimentales par exemple) n'ont pas d'influence sur les données.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Test de Wilcoxon et test de Mann-Whitney (test non paramétrique de comparaison entre 2 populations indépendantes) Test de Friedman (comparaison de plus de 2 populations appariées) Test de Kruskal-Wallis (comparaison de plus de 2 populations indépendantes)
La validité est utilisée pour examiner la précision avec laquelle un élément est mesuré par une méthode. Si une méthode particulière mesure effectivement tout ce qu'elle prétend et que les résultats générés correspondent étroitement aux valeurs du monde réel, la méthode est considérée comme valide.
principal est de préciser un phénomène sur une population globale, à partir de son observation sur une partie restreinte de cette population, l'échantillon. Il s'agit donc d'induire (ou encore d'inférer) du particu- lier au général avec un objectif principalement explicatif.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
Selon une terminologie classique, ce sont la statistique descriptive et la statistique mathématique.
La science des statistiques est utile pour choisir objectivement un échantillon, faire des généralisations valables à partir des observations faites sur l'ensemble d'échantillons, mais aussi pour mesurer le degré d'incertitude, ou la fiabilité, des conclusions tirées.
Les tests statistiques (ou tests d'hypothèses) vont vous permettre de tirer des conclusions claires, mathématiquement rigoureuses (et élégantes !) à partir des données que vous aurez analysées.
Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Contentez vous de les décrire. Les raisons pour lesquelles des résultats particuliers sont observés (ou non) sont l'objet de la partie discussion. – Lorsque vous mentionnez vos variables dans le texte, ou qu'elles sont écrites dans vos tableaux ou figures, utilisez des termes français transparents et non pas des codes.
Les données peuvent être divisées en 2 grandes catégories. Catégoriques et quantitatives. Les données catégories peuvent être subdivisées en données nominales et ordinales. Les données quantitatives peuvent être discrète ou continue et sont aussi appelées données numériques.
(1) définir l'hypothèse nulle, notée H0, à contrôler ; (2) choisir une statistique pour contrôler H0 ; (3) définir la distribution de la statistique sous l'hypothèse « H0 est réalisée » ; (4) définir le niveau de signification du test α et la région critique associée ; (5) calculer, à partir des données fournies par l' ...
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Spécificité = VN/(VN + FP). Par exemple, elle est ici de 3/(3+2)=60%. Cela veut dire que 60% des individus négatifs ont été prédits comme négatifs. Taux de faux positifs (TFP) : proportion de cas négatifs que le test détecte comme positifs.