Les vingt premiers nombres de la suite de Fibonacci, de F(0) à F(19), sont : 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597, 2584 et 4181.
Ainsi, les dix premiers termes qui la composent sont 0, 1, 1, 2, 3, 5, 8, 13, 21 et 34. Cette suite à la logique simple est considérée comme le tout premier modèle mathématique en dynamique des populations.
1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,… Il suffit de prendre deux nombres de départ. Les ajouter donne le troisième, puis le deuxième + le troisième donne le quatrième et ainsi de suite. Les termes de cette suite sont appelés nombres de Fibonacci.
La suite de Fibonacci : une suite infinie
Il suffit de se rappeler sa règle de construction : à l'exception des deux premiers, chaque terme de la suite est égal à la somme des deux termes qui le précèdent immédiatement. Par exemple : 21 = 8 + l3 ; 55 = 21 + 34.
Le nombre d'or, aussi appelé ratio d'or, est un concept mathématique qui donne le nombre irrationnel phi ou Φ, qui équivaut approximativement à 1,618. Il provient de la séquence de Fibonacci, qui est une série de nombres dans laquelle le nombre suivant est la somme des deux nombres précédents.
La suite de Fibonacci est présente dans de nombreuses disciplines ainsi que dans la nature. Par exemple, elle est utilisée pour décrire la croissance des plantes, estimer l'augmentation de la population sur une période donnée, modéliser les épidémies de virus et prévoir le comportement des marchés financiers.
Les nombres premiers
Rappelons qu'un nombre premier est un nombre entier naturel possédant exactement deux diviseurs entiers naturels, à savoir 1 et lui-même — ce qui exclut 1 comme nombre premier. La suite des nombres premiers commence ainsi : 2,\, 3,\, 5,\, 7,\, 11,\, 13,\, 17,\, 19,\, 23,\, 29,\, 31,\, \dots .
III.
Voici une liste des nombres premiers jusqu'à 100 : 2, 3, 5 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89 et 97.
Tous les nombres de la suite s'écrivent avec quatre lettres : zéro ; deux ; cinq ; sept ; huit : neuf ; onze. Ils sont rangés dans l'ordre croissant. Pour trouver le suivant, il suffit donc de trouver le premier nombre plus grand que onze et qui s'écrit avec quatre lettres : c'est donc cent.
Le « nombre d'or » est un nombre irrationnel censé représenter une harmonie divine. Il a été sans doute découvert par des mathématiciens grecs de la haute Antiquité. Euclide (vers 300 av.
Le nombre d'or est donc approximativement de 1,6180339887. Il est représenté par la lettre grecque phi, Φ. Il est souvent nommé la "divine proportion", car il apparaît très fréquemment dans la nature. Par exemple, le nombre de pétales dans une fleur est très souvent un nombre issu de la suite de Fibonacci.
Une juxtaposition de carrés dont les côtés ont pour longueur des nombres successif de la suite de Fibonacci : 1, 1, 2, 3, 5, 8, 13 et 21.
Le premier nombre parfait est 6. En effet 1, 2 et 3 sont les diviseurs propres de 6 et 1+2+3=6. 28 est également un nombre parfait : 1+2+4+7+14=28. Les nombres parfaits sont rares, il n'en existe que trois inférieurs à 1000 qui sont 6, 28 et 496.
Le nombre d'or vaut 1,618... et beaucoup de décimales (ça ne finit jamais). Son carré est égal à lui-même plus un, soit 2,618... (toutes les décimales sont les mêmes) et son inverse est égale à lui-même moins un, soit 0,618... avec les mêmes décimales aussi.
Leonardo Fibonacci ou « Léonard de Pise » (vers 1170 à Pise - vers 1250) est un mathématicien italien connu notamment par la suite de Fibonacci. Ses travaux revêtent une importance considérable car ils sont le chainon apportant notamment la notation des chiffres indo-arabes aux mathématiques de l'Occident.
Le premier à s'intéresser de façon sérieuse au nombre e est le mathématicien suisse Leonhard Euler (1707 ; 1783). C'est à lui que nous devons le nom de ce nombre. Non pas qu'il s'agisse de l'initiale de son nom mais peut être car e est la première lettre du mot exponentielle.
1, 11, 21, 1211, 111221, à la question “Quel est le prochain terme ?”, la réponse est : page 153 “MATh.en.JEANS” en 1995 Page 2 312211. Cette suite fait partie des suites qui se lisent. En effet, si on lit le cinquième terme, on voit trois 1, deux 2 et un 1 ; ce qui se lit en chiffres : 312211.
Le nombre d'or et ses propriétés fascinantes se manifestent dans de multiples domaines : en arithmétique, dans la suite de Fibonacci. en géométrie, dans le rectangle d'or, le triangle d'or, l'angle d'or, la spirale d'or, le pentagone régulier, etc.
Au cœur d'une marguerite ou d'un aster, les minuscules fleurs disposées sur le capitule (les fleurons) forment deux familles de 13 et 21 spirales, voire 21 et 34. Sur des fleurs plus grosses comme des tournesols, on trouve les paires (34,55) ou (55,89), et éventuellement plus.
La racine carrée de cinq, notée √5 ou 51/2, est un nombre réel remarquable en mathématiques et valant approximativement 2,236. C'est un irrationnel quadratique et un entier quadratique.
On le note φ (phi) en hommage au sculpteur grec Phidias (Ve siècle avant J.C.) qui participa à la décoration du Parthénon sur l'Acropole à Athènes.
La détermination d'un nombre premier
Les nombres premiers inférieurs à \sqrt{47} sont donc 2, 3 et 5. Or, on sait que : 47 n'est pas divisible par 2. 4+7=11, qui n'est pas un multiple de 3, donc 47 n'est pas divisible par 3.
Définition : Un nombre premier est un nombre entier qui n'a que deux diviseurs : 1 et lui- même. Liste de quelques nombres premiers: 2-3-5-7-11-13-17-19-23-29-31-37-41-43-47-53-59-61 Exemples de nombres qui ne sont pas premiers: 8 n'est pas premier car il est divisible par 1, 2, 4 et 8.
La bonne réponse est 22.