75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(45) est √22 .
Trigonométrie Exemples
La valeur exacte de sin(60°) sin ( 60 ° ) est √32 . Le résultat peut être affiché en différentes formes.
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
Calcul du sinus
Le résultat est : sin 50° = 0,766 (au millième près).
Dans un triangle rectangle, le sinus d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur de l'hypoténuse.
Le sinus de 30 degrés est égal à 0,5.
La mesure d'un angle droit est de 90°. La mesure d'un angle obtus se situe entre 90° et 180°. La mesure d'un angle plat est de 180°. La mesure d'un angle rentrant se situe entre 180° et 360°.
Lorsque la mesure de l'angle est entre 0 et 90 degrés, l'angle est dit aigu. Lorsque la mesure de l'angle est entre 90 et 180 degrés, l'angle est dit obtus.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Le sinus de 𝐴 moins 𝐵 est égal à sin 𝐴 cos 𝐵 moins cos 𝐴 sin 𝐵. Nous pouvons donc réécrire sin 180 moins 𝑥 comme sin 180 multiplié par cos 𝑥 moins cos 180 multiplié par sin 𝑥 Nous savons que le sinus de 180 degrés est égal à zéro. Le cos de 180 degrés est égal à moins un. Zéro multiplié par cos 𝑥 est égal à zéro.
Comme l'angle 45° se situe dans le deuxième quadrant, cos(45°) est négatif. On peut donc en déduire que cos(45°) = -√1/2 = -0,7071.
La valeur exacte de cos(60°) cos ( 60 ° ) est 12 . Le résultat peut être affiché en différentes formes.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
La loi des sinus nous permet de calculer des longueurs et des angles inconnus dans des triangles non rectangles dont nous connaissons deux paires de côtés et angles opposés. Lors du calcul d'une longueur de côté, nous devrions utiliser cette version car les longueurs des côtés sont au numérateur.
D'où cos 120 = 1/2 !
Le sinus d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par l'hypoténuse.
Ces fonctions trigonométriques ont déjà été étudiées en Seconde. Aux deux infinis, les fonctions sinus et cosinus n'admettent pas de limite. En effet ces deux fonctions étant 2 -périodiques, elles reproduisent à l'infini un motif. Elles ne vont ni vers une valeur finie, ni vers un infini.
On utilise cette loi quand on connait la mesure d'un angle et celle de son côté opposé ainsi que n'importe quelle autre valeur de côté (à gauche) ou d'angle (à droite) du triangle. En bref, il faut une paire (côté, angle) qui est complète.
Le segment à 45° de l'axe des abscisses (sur lequel se confond le segment-rayon) mesure 1,41. Évidemment, on mesure la longueur avec une règle. Pour n'importe quel autre angle, on fait pareil : la mesure de la longueur des segments, on divise ensuite à la main, et on a la valeur du sinus de l'angle.