Dans un triangle rectangle, le sinus d'un angle est égal au rapport de la longueur du côté opposé à cet angle sur la longueur de l'hypoténuse.
Le sinus. Le sinus s'utilise aussi dans les triangles rectangles. Dans le cas d'un triangle rectangle ABC rectangle en B, le sinus de l'angle A est égal à la longueur du côté opposé à l'angle A divisée par la longueur de l'hypoténuse, donc sin A = BC/AC.
Sinus = côté opposé / hypoténuse.
Calcul du sinus
On veut obtenir une valeur approchée du sinus d'un angle de 50°. On met la calculatrice en mode degré ; on tape sin puis 50. L'affichage est : 0,7660444431. Le résultat est : sin 50° = 0,766 (au millième près).
Le sinus d'un angle aigu dans un triangle rectangle est le quotient de son côté opposé par l'hypoténuse.
Dans un triangle rectangle, on appelle cosinus d'un angle aigu le rapport du côté adjacent à l'angle et de l'hypoténuse. Exemple et notation : cos a = AC AB . Dans un triangle rectangle, on appelle sinus d'un angle aigu le rapport du côté opposé à l'angle et de l'hypoténuse. Exemple et notation : sin a = BC AB .
On peut donc écrire que le sinus de 30 degrés est égal au côté opposé — c'est 𝑏 — divisé par l'hypoténuse — c'est 𝑐. Puisqu'on a ces valeurs, on peut remplacer 𝑏 par un et 𝑐 par deux, ce qui donne que le sinus de 30 degrés est égal à un sur deux, ou un demi.
75 degrés est simplement 75. Et puis quatre divisé par 60 égale 0,06666. Et 12 divisé par 3600 égale 0,00333. Donc, en ajoutant ces chiffres entre parenthèses, on obtient sinus 75.06999.
Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(60) est √32 . Le résultat peut être affiché en différentes formes.
La valeur exacte de sin(90°) sin ( 90 ° ) est 1 .
Afin de répondre à cette question, nous utiliserons nos connaissances de la trigonométrie dans les triangles rectangles. Les rapports trigonométriques nous disent que le sinus de l'angle 𝜃 est égal au côté opposé sur l'hypoténuse. Le cosinus de l'angle 𝜃 est égal au côté adjacent sur l'hypoténuse.
Si un triangle est rectangle, alors le milieu de l'hypoténuse est équidistant des trois sommets. En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Nous pouvons appliquer la loi des sinus quand : nous connaissons deux longueurs et la mesure d'un angle, afin de trouver la mesure d'un angle inconnue ; nous connaissons une longueur et les mesures de deux angles, pour trouver une longueur inconnue.
Dans un triangle rectangle, le cosinus d'un angle est égal au rapport de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Les sinus sont des cavités aériennes, présentes par paire. Ces cavités sont creusées dans le massif osseux de la face et elles communiquent avec les fosses nasales par un orifice étroit. Les sinus sont tapissés par une muqueuse qui sécrète du mucus évacué dans les fosses nasales par cet orifice.
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Appliquez l'angle de référence en trouvant l'angle avec des valeurs trigonométriques équivalentes dans le premier quadrant. Rendez l'expression négative car le sinus est négatif dans le quatrième quadrant. La valeur exacte de sin(45) est √22 .
sin(10°) ≈ 0,174 (en descendant : troisième colonne en partant de la gauche) ; sin(50°) ≈ 0,766 (en montant : troisième colonne en partant de la droite).
Trigonométrie Exemples
La valeur exacte de cos(45) est √22 . Le résultat peut être affiché en différentes formes.
Nous pouvons donc également voir que le sinus de 30 degrés est égal à un demi et le cosinus de 30 degrés est égal à racine de trois sur deux.
Trigonométrie Exemples
La valeur exacte de cos(90) est 0 .
Pour traçer un angle de 45°, il suffit de traçer une diagonale d'un carré. Un angle à 135° est égal à 90° + 45°, donc on traçe une diagonale d'un carré dans les sens opposé. Un triangle équilatéral à trois cotés égaux et trois angles à 60°.
Un angle droit est un angle qui mesure 90°.
Pour tracer un angle de 120 °, il suffit de tracer un angle droit accolé à un angle de 30 °. Pour tracer un angle de 105 °, il suffit de tracer un angle droit accolé à un angle de 15 °.