Le test le plus utilisé pour tester la liaison entre une variable quantitative et une variable qualitative à deux (2) modalités est le test de Student (alternative test de Man-Withney).
Croiser une variable quantitative et une variable qualitative, c'est essayer de voir si les valeurs de la variable quantitative se répartissent différemment selon la catégorie d'appartenance de la variable qualitative. Cette syntaxe de boxplot utilise une nouvelle notation de type “formule”.
Le test de corrélation est utilisé pour évaluer une association (dépendance) entre deux variables. Le calcul du coefficient de corrélation peut être effectué en utilisant différentes méthodes.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives.
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
Le test t est utilisé lorsque vous devez trouver la moyenne de la population entre deux groupes, tandis que lorsqu'il y a trois groupes ou plus, vous optez pour le test ANOVA. Le test t et l'ANOVA sont tous deux des méthodes statistiques permettant de tester une hypothèse.
Vous utilisez un test du khi-deux pour tester des hypothèses afin de déterminer si les données sont conformes aux attentes. L'idée de base qui sous-tend le test est de comparer les valeurs observées dans vos données aux valeurs attendues si l'hypothèse nulle est vraie.
Or selon la théorie il faut faire un test de Fisher lorsque la présence de racine unitaire n'est pas rejetée (p. value > 5%). Dans le cas contraire, le test convenable est en principe celui de student pour tester uniquement la significativité de la tendance ou de la constante.
ANOVA permet de déterminer si la différence entre les valeurs moyennes est statistiquement significative. ANOVA révèle aussi indirectement si une variable indépendante influence la variable dépendante.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Si les variables sont ordinales, discrètes ou qu'elles ne suivent pas une loi normale, on utilise la corrélation de Spearman. Cette corrélation n'utilise pas les valeurs des données mais leur RANG. L'interprétation du coefficient de corrélation obtenu reste la même que lorsqu'on utilise une corrélation de Pearson.
Les tests de Mann-Whitney servent à vérifier que deux échantillons d'une population ont une position équivalente. Les observations des deux groupes sont combinées et ordonnées, et il leur est attribué un rang moyen en cas d'ex aequo. Le nombre d'ex aequo doit être petit par rapport au nombre total d'observations.
Le résultat noté F. La signification notée p : cette valeur, obtenue grâce aux données ddl et F, constitue le rapport de variance qui confirme ou qui infirme l'hypothèse testée. Si la valeur de p est inférieure à 0,05, l'hypothèse nulle, selon laquelle les moyennes sont égales, peut être vraisemblablement rejetée.
Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche). Si vous avez plus de deux groupes dans votre étude, comme l'ethnicité (africaine, asiatique, blanche, etc.)
La description d'une variable quantitative se base sur les statistiques suivantes : la moyenne, la médiane, la variance, l'écart-type, les quantiles. On peut aller plus loin en regardant l'asymétrie et l'aplatissement.
L'ANOVA à 2 facteurs est généralement employée pour analyser les résultats d'une expérimentation dans laquelle des individus, ou des unités expérimentales, ont été exposées, de façon aléatoire (randomisée), à l'une des combinaisons (ou croisement) des modalités des deux variables catégorielles.
Test d'ANOVA utilisé dans le cadre d'une analyse post-hoc, pour savoir s'il existe ou non une différence significative entre plusieurs groupes de moyennes.
Le test de Shapiro-Wilk (W) est utilisé pour tester la normalité. Si la statistique W est significative, il faut alors rejeter l'hypothèse selon laquelle la distribution correspondante est normale.
Le test de Shapiro-Wilk donne une probabilité de dépassement de 0.1831, supérieure à 0.05. L'hypothèse de normalité est donc tolérée. Le test de Shapiro-Wilk donne une probabilité de dépassement de 0.0009, inférieure à 0.05. L'hypothèse de normalité est donc rejetée.
Comment utilise-t-on l'ANOVA univariée ? L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
Cela tient en une petite phrase : le χ² permet de dire s'il y a indépendance ou non entre vos variables. Plus simplement mais toujours aussi concis le χ² permet d'étudier s'il y aun lien entre 2 variables qualitatives dans un tableau croisé (aussi appelé tableau de contingence).
La statistique du Khi deux de vraisemblance est de 11,816 et la valeur de p = 0,019. Avec un seuil de signification de 0,05, vous pouvez donc conclure que l'association entre les variables est statistiquement significative.
Le calcul du Khi2 des données s'effectue comme suit : La donnée observée moins la donnée de l'hypothèse nulle mise au carré et finalement divisée par la donnée de l'hypothèse nulle. *Le « O » est la donnée observée et le « E » est la donnée de l'hypothèse nulle. On répète cette formule pour chaque cellule du tableau.