Test de Wilcoxon et test de Mann-Whitney (test non paramétrique de comparaison entre 2 populations indépendantes) Test de Friedman (comparaison de plus de 2 populations appariées) Test de Kruskal-Wallis (comparaison de plus de 2 populations indépendantes)
Si l'étude vise à comparer entre plus de deux groupes (3 ou plus), c'est une analyse de variance ou ANOVA qui est à appliquer. A condition, comme dans le cas du test T, que les données des échantillons suivent une distribution Normale et d'égalité des variances.
Test unilatéral : test statistique pour lequel on prend comme hypothèse alternative l'existence d'une différence dont le sens est connu. Test bilatérale : test statistique pour lequel on prend, comme hypothèse alternative, l'existence d'une différence, dans un sens ou l'autre.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».
Le test T est une statistique inférentielle utilisée pour évaluer les différences entre les moyennes de deux groupes. Le test T est généralement utilisé lorsque les ensembles de données suivent une distribution normale et peuvent avoir des variances inconnues.
Duncan en 1955. Ce test post-hoc ou test de comparaisons multiples peut être utilisé pour déterminer les différences significatives entre les moyennes des groupes dans une analyse de variance.
Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche). Si vous avez plus de deux groupes dans votre étude, comme l'ethnicité (africaine, asiatique, blanche, etc.)
L'analyse de variance ou ANOVA permet de faire une comparaison des moyennes entre plusieurs populations. Dans le cas particulier où l'on ne désire comparer entre-elles que 2 populations, on utilise généralement le test de Student, une version particulière de l'ANOVA.
L'analyse de la variance (ANOVA) est très utilisée en statistique et dans le domaine des études marketing. Cette méthode analytique puissante sert à mettre en avant des différences ou des dépendances entre plusieurs groupes statistiques.
L'idée. Si on souhaite comparer deux échantillons (i.i.d) gaussiens, il nous suffit en fait de comparer leurs paramètres : leur moyenne μ1 et μ2, et leur variance σ21 et σ22. La méthodologie la plus classique est d'effectuer de manière séquentielle : Un test d'égalité des variances.
Le test de Kruskal-Wallis est un test non paramétrique à utiliser lorsque vous êtes en présence de k échantillons indépendants, afin de déterminer si les échantillons proviennent d'une même population ou si au moins un échantillon provient d'une population différente des autres.
Corrélation entre variables qualitatives
Si vous cherchez à étudier la relation entre deux ou plusieurs variables qualitatives, il faut utiliser le test de Khi-2 d'indépendance. Ce test a le même principe et les mêmes calculs que le test du Khi-2 de comparaison de pourcentages.
Utilisez les courbes superposées pour comparer une ou plusieurs variables de l'axe des Y et une variable de l'axe des X. Les courbes superposées sont particulièrement recommandées lorsque la variable X est une variable de temps, car elles vous permettent comparer l'évolution de plusieurs variables dans le temps.
Les tests d'homogénéité permettent de décider si plusieurs sous-populations sont homogènes par rapport à un critère donné.
Le cas de plus de deux échantillons appariés :
Ce test, très utile, permet d'analyser la liaison entre un caractère quantitatif et un caractère qualitatif à k classes (k >2). Ce test permet notamment d'effectuer des comparaisons multiples en testant ce que l'on appelle les rangs moyens.
L'ANOVA univariée est généralement utilisée lorsque l'on a une seule variable indépendante, ou facteur, et que l'objectif est de vérifier si des variations, ou des niveaux différents de ce facteur ont un effet mesurable sur une variable dépendante.
L'ANOVA à 2 facteurs est généralement employée pour analyser les résultats d'une expérimentation dans laquelle des individus, ou des unités expérimentales, ont été exposées, de façon aléatoire (randomisée), à l'une des combinaisons (ou croisement) des modalités des deux variables catégorielles.
Le test de Bartlett peut être utilisé pour comparer deux variances ou plus. Ce test est sensible à la normalité des données. Autrement dit, si l'hypothèse de normalité des données semble fragile, on utilisera plutôt le test de Levene ou de Fisher.
Le test de McNemar permet de déterminer si des proportions appariées sont différentes. Vous pouvez par exemple l'utiliser pour déterminer si un programme de formation à un effet sur la proportion de participants qui répondent correctement à une question.
Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.
Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
En statistiques, les tests de normalité permettent de vérifier si des données réelles suivent une loi normale ou non. Les tests de normalité sont des cas particuliers des tests d'adéquation (ou tests d'ajustement, tests permettant de comparer des distributions), appliqués à une loi normale.
Le test exact de Fisher calcule la probabilité d'obtenir les données observées (en utilisant une distribution hypergéométrique) ainsi que les probabilités d'obtenir tous les jeux de données encore plus extrêmes sous l'hypothèse nulle. Ces probabilités sont utilisées pour calculer la p-value.
Une approche utilisée dans R avec la fonction "fisher. test" calcule la valeur p en sommant les probabilités de toutes les tables ayant une probabilité inférieure ou égale à celle de la table observée. Le test permet de rejeter l'indépendance entre le sexe et le fait de faire un régime.