L'intersection indique ce qui est à la fois une chose ET une autre. Son signe est « ∩ » et se prononce « inter ». L'union indique ce qui peut être soit une chose soit une autre, soit les deux à la fois. Son signe est « ∪ » et se prononce « union ».
L'union est commutative, c'est-à-dire que, pour des ensembles A et B quelconques, on a : A ∪ B = B ∪ A. L'intersection est distributive sur l'union, c'est-à-dire que, pour des ensembles A, B et C quelconques, on a : A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).
Intersection et Réunion : A ∩ B = "A inter B" se réalise quand les événements A ET B se réalisent ensemble ("simultanément") . A ∪ B = "A union B" se réalise quand l'événement A OU l'événement B se réalise (ou les 2). Propriété fondamentale : P(A ∪ B) = P(A) + P(B) − P(A ∩ B)
Dans la théorie des ensembles, l'intersection est une opération ensembliste qui porte le même nom que son résultat, à savoir l'ensemble des éléments appartenant à la fois aux deux opérandes : l'intersection de deux ensembles A et B est l'ensemble, noté A ∩ B, dit « A inter B », qui contient tous les éléments ...
L'union (∪) de deux ensembles A et B s'exprime ainsi : A∪B={x∈Ω∣x∈A ou x∈B} où Ω représente l'ensemble dans lequel se trouvent tous les éléments, c'est-à-dire l'univers des possibles. Si on souhaite parler de l'union des ensembles A et B, on écrit A∪B. On peut représenter cette union à l'aide d'un diagramme de Venn.
1. Endroit où deux lignes, deux routes, deux chemins se croisent : À l'intersection de la nationale et de la départementale. 2. En géométrie, lieu où des lignes, des surfaces, des volumes se rencontrent et se coupent : Point d'intersection.
Pour calculer P(G), on peut se rappeler que "la probabilité d'une intersection est le produit des probabilités rencontrées sur le chemin". Ainsi, à l'aide de l'arbre, P(G∩I)=P(G)×PG(I).
La formule pour calculer une probabilité conditionnelle est : P(B∣A)=P(B∩A)P(A) P ( B ∣ A ) = P ( B ∩ A ) P ( A ) où P(B∩A) P ( B ∩ A ) représente la probabilité de l'intersection des deux événements. De plus, il est nécessaire que P(A)>0 P ( A ) > 0 .
Le signe m, un symbole proche du futur ∞, y désigne l'infini. Sans doute Wallis a-t-il aussi pensé que la boucle que représente le symbole ∞ faisait penser à l'infini ,puisqu'elle peut être parcourue sans fin. L'apparition du symbole ∞ contribua en tout cas fortement à la modernisation en marche des mathématiques.
Deux événements A et B sont indépendants si et seulement si : p ( A ∩ B ) = p ( A ) × p ( B ) .
Les diagrammes de Venn ont été conçus autour de 1880 par John Venn. Ils sont utilisés pour enseigner la théorie des ensembles élémentaires, ainsi que pour illustrer des relations simples en probabilité, logique, statistiques, linguistique et en informatique.
Sous l'onglet Insertion, dans le groupe Illustrations, cliquez sur SmartArt. Dans la galerie Choisir un graphique SmartArt, cliquez sur Relation, cliquez sur un type de diagramme de Venn (tel que Venn simple), puis cliquez sur OK.
Dans le langage courant, on dit que deux événements sont indépendants quand la réalisation de l'un ne dépend pas de celle de l'autre. On va donner une définition mathématique de cette notion. Deux évènements A et B sont dits indépendants si P(A B) = P(A) × P(B).
= P(A) + P(B) – P(A – B) C'est-à-dire que la probabilité que l'un ou l'autre des deux événements se produise est égale à la probabilité que le premier événement se produise, plus la probabilité que le second se produise, moins la probabilité que les deux se produisent.
Le nombre des éléments de E est appelé cardinal de E. Il est noté Card(E). Card(A ∪ B) = Card(A) + Card(B) − Card(A ∩ B).
Pour le construire, on part d'une origine que l'on nomme racine de l'arbre, puis on construit les branches qui mènent aux feuilles appelées nœuds, c'est-à-dire à tous les événements possibles. Sur chacune des branches on indique la probabilité de l'événement correspondant, on appelle cela le poids de la branche.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Le chiffre huit 8 et un des nombres les plus sacrés, il réunit les deux mondes, le physique et le spirituel dans une circulation spiralée. Couché, il devient lemniscate, symbole de l'infini. Présent au cœur de nos cellules, et dans la structure de la molécule d'ADN il représente deux hélices entrelacées.
Le signe infini se représente comme un 8 couché, il a une signification bien particulière dans chaque culture et religion: En Inde, par exemple, il ferait référence au dieu Shiva de par ses 8 bras, aux 8 règlements de conduites, aux 8 voeux prononcés par les moines bouddhistes.
L'union indique ce qui peut être soit une chose soit une autre, soit les deux à la fois. Son signe est « ∪ » et se prononce « union ». Il se traduit donc par OU. Ces deux notions sont reliées par la formule A ∪ B = A + B – (A ∩ B)
La probabilité d'un événement est égale à la somme des probabilités des chemins conduisant à cet événement.
Le théorème de Bayes est utilisé dans l'inférence statistique pour mettre à jour ou actualiser les estimations d'une probabilité ou d'un paramètre quelconque, à partir des observations et des lois de probabilité de ces observations. Il y a une version discrète et une version continue du théorème.
P(A) = 1/4 que B soit réalisé ou non. Attention, on calcule bien la probabilité de A; B est la condition. On peut, à la lumière de cette nouvelle notion, redéfinir la notion d'événements indépendants : Deux événements A et B sont indépendants quand P(A si B)
On dit que ? et ? sont des évènements incompatibles si ? ∩ ? = ∅ . Cela revient à dire que les évènements ne peuvent pas se produire en même temps, car ? ( ? ∩ ? ) = ? ( ∅ ) = 0 . On dit qu'un ensemble d'évènements est incompatible s'ils sont incompatibles deux à deux.
Ex. : 30, 790, 9 850, 213 850, etc. Pour trouver les multiples de 3, il faut additionner tous les chiffres composant le nombre : si le total est égal à 3, 6 ou 9, c'est bien un multiple de 3. Ex. : si l'on additionne le 1 et le 2 du nombre 12, on trouve 3 (1 + 2 = 3) ; donc 12 est un multiple de 3 (3 × 4 = 12).