Quelle est la différence entre primitive et intégrale ?

Interrogée par: Gérard Rocher-Lebreton  |  Dernière mise à jour: 18. Mai 2024
Notation: 4.7 sur 5 (54 évaluations)

La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).

Comment reconnaître une primitive ?

En pratique, déterminer une primitive d'une fonction, c'est chercher une fonction dont la dérivée est la fonction donnée. Pour une fonction puissance, ou plus généralement une fonction polynôme, cette détermination est facile : il suffit d'augmenter d'une unité l'exposant.

Comment expliquer ce qu'est une primitive ?

Définition de la primitive. Lorsque l'on a une fonction f(x) , il existe toujours une autre fonction F(x) , telle que si je la dérive donc F'(x) elle me donne la fonction f(x). D'autant il n'existe pas une seule fonction mais au contraire une infinité. Qu'est ce qu'une Primitive.

Quand utiliser une intégrale ?

L'intégrale est utilisée pour calculer l'aire située sous une fonction. Cette technique est très utilisée en architecture mais aussi en probabilités continues ou même pour la construction des autoroutes.

Comment définir une intégrale ?

En mathématiques, l'intégrale d'une fonction réelle. positive est la valeur de l'aire. du domaine délimité par l'axe des abscisses et la courbe. représentative de la fonction.

70+ Énigmes Complexes Pour te Confondre

Trouvé 18 questions connexes

Comment trouver la primitive d'une intégrale ?

Pour déterminer une primitive de x↦eaxcos(bx) x ↦ e a x cos ⁡ , on commence par écrire cos(bx)=Re(eibx) ⁡ ( b x ) = ℜ e ( e i b x ) et donc que eaxcos(bx)=Re(e(a+ib)x) e a x cos ⁡ ( b x ) = ℜ e ( e ( a + i b ) x ) .

Quel est l'intégrale de 0 ?

Intégrale et primitives

L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.

Comment calculer une intégrale exemple ?

Considérons la fonction f définie sur R par f(x)=3x2. La fonction F définie sur R par F(x) = x3 est une primitive de f sur R puisque F′(x) = f(x). La fonction G définie sur R par G(x) = x3 + 2 est aussi une primitive de f sur R puisque G′(x) = f(x). √x2 + 3 = f(x).

Quelle est l'unité d'une intégrale ?

L'intégrale de la fonction f sur [ a ; b ] notée est en unités d'aire, la différence entre : les aires situées au dessus de (Ox) et les aires situées en dessous de (Ox).

Pourquoi l'intégrale est une somme ?

Pour conceptualiser l'intégrale, il faut imaginer que tu resserres de plus en plus l'espace vide qui subsiste entre ces points (en en rajoutant plein), jusqu'à ce que tu passes d'un point à un autre sans voir la différence. L'intégrale est en fait une somme qui se calcule généralement sur un ensemble infini.

Quelle est la primitive de 2x ?

Ainsi, toutes les primitives de f (x) = 2x sont de la forme F (x) = x2 + C (C est une constante).

Qui a inventé les primitives en maths ?

Quand, par qui, et pour quelles raisons les dérivés, intégrales, et primitives mathématiques ont-elles été utilisées pour la première fois ? - Quora. L'invention de l'analyse infinitésimale est attribuée indépendamment à Newton (le physicien anglais) et Leibniz (le philosophe allemand).

Pourquoi utiliser les primitives ?

Les primitives sont utilisées quand on a la dérivée d'une fonction et qu'on cherche la fonction elle-même.

Comment écrire une primitive ?

On peut noter l'ensemble des primitives d'une fonction avec le symbole d'intégration. Par exemple, l'ensemble des primitives de la fonction ‍ ‍ f ( x ) = 2 x ‍ est noté ∫ 2 x d x ‍ .

Quelle est la primitive de ln ?

On appelle fonction logarithme népérien, noté ln (ou ), la primitive définie sur ,de la fonction x ↦ 1 x s'annulant pour . Pour : ln x > 0 est l'aire limitée par la courbe représentative y = 1 / t , l'axe et les droites d'équations et .

Comment calculer la dérivée d'une primitive ?

Sa dérivée est égale à F′(x)=v′(x)f(v(x))−u′(x)f(u(x)), F ′ ( x ) = v ′ ( x ) f ( v ( x ) ) − u ′ ( x ) f ( u ( x ) ) , formule qui se démontre par application du théorème fondamental du calcul intégral et par composition.

Est-ce qu'une intégrale peut être négative ?

Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.

Comment savoir si une intégrale est positive ou négative ?

Si la fonction est positive sur l'intervalle d'intégration, l'intégrale est positive et donc I_{n+1}-I_{n} est positif. Si la fonction est négative sur l'intervalle d'intégration, l'intégrale est négative et donc I_{n+1}-I_{n} est négatif.

Comment résoudre une intégrale ?

Divisez a (le coefficient) par n+1 (la puissance augmentée de 1) et augmentez la puissance d'une unité. En d'autres mots, l'intégrale de y = a •xn est y = (a/n+1)•x(n+1). Ajoutez la constante d'intégration C à votre intégrale indéfinie pour accorder votre résultat aux éventuelles conditions initiales du problème.

Comment écrire une intégrale sur ordi ?

2ième Exemple
  1. la touche ∫ du clavier scientifique ou Ctrl-S au clavier ce qui saisit une intégrale indéfinie,
  2. la touche , pour passer à une intégrale définie (pour faire l'inverse on sélectionnerait chaque borne puis on taperait sur la touche d'effacement Backspace),

Quel est l'intégrale de sinus ?

L'intégrale de sin(x) par rapport à x est −cos(x) .

Comment faire la primitive d'une division ?

Une primitive de la division u' / u^n

On va donc calculer la dérivée de (u(x)^(-n+1))/(-n+1). La dérivée de ça c'est u'(x) pour commencer, c'est la partie facile, u'(x) que multiplie la dérivée de cette chose-là.

Est-ce que toute fonction continue admet une primitive ?

Toutes les fonctions n'ont pas de primitive. Et une primitive, si elle existe, n'est jamais unique : elle n'est définie qu'à une constante près. Le théorème suivant garantit l'existence d'une primitive lorsque la fonction est continue.

Comment montrer que la primitive est impaire ?

et F son unique primitive prenant la valeur 0 en 0. Alors, la fonction G : x → F (x)+ F (−x) est dérivable sur de dérivée x → f (x)− f (−x) = 0. G est donc constante et comme G (0) = 0, alors :∀x ∈ G (x) = F (x)+ F (−x) = 0. F est donc impaire.

Quelle est la primitive de exponentielle ?

Les primitives de la fonction exponentielle sont les fonctions F telles que F(x) = ex + k. Une primitive de la fonction qui s'écrit u' eu est la fonction eu. Soit a un réel strictement positif. La fonction exponentielle de base a est la fonction f définie sur Ë, par f(x) = ax = ee ln a Pour tout réel x, ax > 0.

Article précédent
C'est quoi une bouche hygroréglable ?
Article suivant
Comment mettre à jour un DNS ?