Comment la définir sous forme explicite ? Une formule explicite d'une suite arithmétique de premier terme u 1 = A et de raison est : pour tout n ≥ 1 , u n = A + B ( n − 1 ) .
Une suite (vn)est dite géométrique lorsqu'il existe un nombre réel non nul q tel que, pour tout entier naturel n, vn+1=q×vn. Le nombre réel q est appelé la raison de la suite (vn). Exemple (v_n) est la suite géométrique de raison \dfrac{1}{2} et de premier terme v_0 =1.
En mathématiques, une expression de forme fermée (également appelée expression fermée, expression de forme close, expression close ou expression explicite) est une expression mathématique pouvant s'obtenir par une combinaison de nombres ou de fonctions et d'opérations de référence.
Forme explicite d'une suite arithmétique
☞ Si (un) est une suite arithmétique de raison r, alors pour tout entier naturel n,ona: un = u0 +nr. ☞ Si (un) est une suite arithmétique de raison r, alors pour tous les entiers naturels n et k,ona: un = uk +(n −k)r.
Pour calculer la raison d'une suite arithmétique, nous pouvons utiliser la définition par récurrence d'une suite arithmétique, u n + 1 = u n + r . Nous pouvons également exploiter le terme général d'une suite arithmétique, u n = u 0 + n r .
Une suite géométrique est une suite \left(v_n\right) telle que \forall n \in \mathbb{N}, v_{n+1} = v_n \times q, avec q\in \mathbb{R}. On passe d'un terme au suivant en multipliant toujours par le même réel q. Une fois que l'on a identifié une suite géométrique, on peut donner sa forme explicite.
Une suite numérique peut se définir de deux façon :- de manière explicite : chaque terme de la suite peut être calculé à partir de son rang. On dit que u(n) est fonction de n. - de manière récurrente : chaque terme s'obtient grâce au terme précédent. Autrement dit : u(n+1) est fonction de u(n).
Une suite implicite (xn) est une suite définie par une équation En qui dépend de n, souvent de la forme xn est l'unique solution de l'équation fn(x)=0. Comme l'indique son nom, une suite implicite n'est pas explicite.
Définition 1.1.2
Soit (un) une suite. On dit que : a) la suite (un) est croissante si pour tout n ∈ : un ⩽ un+1 ; b) la suite (un) est décroissante si pour tout n ∈ : un ⩾ un+1 ; c) la suite (un) est monotone si elle est croissante ou décroissante ; d) la suite (un) est constante si pour tout n ∈ : un+1 = un.
Définition. Une relation de récurrence est une équation qui exprime chaque élément de la suite comme une fonction des éléments précédents.
On peut trouver la raison en soustrayant un terme de la suite arithmétique au terme suivant. Par exemple, prendre la différence des deux premiers termes nous donne − 3 − 2 = − 5 . Par conséquent, la raison de cette suite arithmétique est − 5 . Comme la raison est négative, cette suite est donc décroissante.
Une suite géométrique est une suite telle que chaque terme se déduit du précédent par la multiplication par un réel constant (également appelé la raison de la suite). Pour montrer qu'une suite (Vn) est géométrique, on montre qu'il existe un réel q constant tel que, pour tout entier n, V_{n + 1} = q \times V_n.
Nous trouvons ainsi la règle suivante : La somme de n termes consécutifs d'une suite arithmétique est égale à la demi-somme des premier et dernier termes, multipliée par le nombre de termes.
Les suites arithmétiques et géométriques. On étudie deux types de suites particulières : les suites arithmétiques (on passe d'un terme au suivant en ajoutant toujours le même nombre) et les suites géométriques (on passe d'un terme au suivant en multipliant toujours par le même nombre).
Pour décrire une suite en mots, on donne l'un des termes et on indique sa raison. Le premier terme de la suite est 1 et la régularité est +2.
Les types de suites numériques souvent rencontrées sont les suites arithmétiques et les suites géométriques. Les suites arithmétiques sont les suites où la différence entre deux termes consécutifs est une constante. En revanche, pour les suites géométriques, le quotient de deux termes consécutifs est une constante.
Une suite est convergente si elle tend vers un nombre fini ; une suite est divergente si elle tend vers l'infini ou si elle n'a pas de limite.
Si le signe de la différence est positif ou nul pour tout n, la suite est croissante. Si le signe de la différence est négatif ou nul pour tout n, la suite est décroissante. Si la différence change de signe en fonction de la valeur de n, la suite n'est pas monotone.
Calculer un+1−un. Si pour tout entier naturel n, un+1−un⩾0 alors la suite (un) est croissante. Si pour tout entier naturel n, un+1−un⩽0 alors la suite (un) est décroissante.
Une information est implicite lorsqu'elle est sous-entendue, subtile ou suggérée. Le lecteur doit la déduire par lui-même. On peut déduire un élément implicite à l'aide de divers indices donnés explicitement dans le texte. Ces indices permettent de lire entre les lignes.
Implicite = qui est contenu dans un propos, un discours sans y être dit ; qui est la conséquence nécessaire de qqch. Vous ne m'avez peut-être pas fait cette promesse, mais elle était implicite dans notre conversation.
On appelle implicite ce qui n'est pas dit dans un énoncé en termes clairs et que l'interlocuteur doit comprendre par lui-même. Un locuteur peut souhaiter en effet passer sous silence certaines informations, parce qu'elles pourraient choquer ou nuire à sa propre image ou à celle d'autrui.
➡️ L'implicite se réfère à ce qui n'est pas clairement exprimé mais sous-entendu, tandis que l'explicite concerne ce qui est explicitement déclaré ou exprimé de manière évidente. Non dit, mais à comprendre selon la situation.
Pour montrer qu'une suite est majorée, minorée ou bornée, on peut utiliser les méthodes suivantes : > Travailler avec des inégalités ou des inéquations. > Faire une démonstration par récurrence. donc (un) est bornée et pour tout n ∈ N n ≥ 1, un ∈ [1;2[.
Ainsi, pour expliciter le contenu d'un texte, par exemple, on peut utiliser des synonymes, avoir recours à des définitions, reformuler ou vulgariser certains passages afin de redire de façon plus claire ce que le texte contient.