cos (a b) = cos a . cos b sin a . sin b.
Formule liant cosinus et sinus (Formule fondamentale)
« Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. »
Elle permet de retenir les trois formules : sinus = opposé / hypoténuse, cosinus = adjacent / hypoténuse et tangente = opposé / adjacent. Le cosinus, le sinus et la tangente d'un angle n'ont pas d'unité.
Dans un triangle rectangle, le cosinus d'un angle, noté « cos », est égal au rapport (quotient) de la longueur du côté adjacent à cet angle sur la longueur de l'hypoténuse.
Deux angles sont complémentaires si leur somme est égale à 90°. Le sinus de l'un est égal au cosinus de l'autre et réciproquement. On va démontrer que le sinus d'un angle est égal au cosinus de son complémentaire.
Si la longueur de l'hypoténuse d'un triangle rectangle est égale à 1, alors la longueur de l'un des deux côtés est le sinus de l'angle opposé et est également le cosinus de l'angle aigu adjacent. Par conséquent, cette identité trigonométrique découle du théorème de Pythagore.
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
Le sinus d'un angle α est noté sin(α) ou simplement sin α.
sin (angle) = (côté opposé à l'angle) divisé par (hypoténuse). cos (angle) = (côté adjacent à l'angle) divisé par (hypoténuse). tan(angle) = (côté opposé à l'angle) divisé par (côté adjacent à l'angle).
Ainsi, AB/AC = AE/AD, donc d'après le théorème de Thalès, (BE) et (CD) sont parallèles. En fait, si les points sont au milieu des segments, les fractions que l'on va calculer seront toujours égales à 1/2 (ou 2 si on prend la fraction inverse), et ce quelle que soit les longueurs de chaque côté.
Jacques OZANAM (1640 - 1718) dans son traité de trigo de 1697 parle encore de sinus de complément et dresse la table des sinus et tangente seulement. Le mot COSINUS est né dans le texte en France entre OZANAM-1697 et BELIDOR-1725.
L'astronome et mathématicien grec Hipparque de Nicée (-190 ; -120) construisit les premières tables trigonométriques sous la forme de tables de cordes : elles faisaient correspondre à chaque valeur de l'angle au centre (avec une division du cercle en 360°), la longueur de la corde interceptée dans le cercle, pour un ...
Quant au cosinus, c'est tout simplement le sinus du complémentaire (de l'angle) ; « co- » vient du latin cum, qui signifie « avec ». La tangente, elle, vient de ce qu'elle mesure une portion d'une tangente au cercle trigonométrique ; et la cotangente est aussi la tangente du complémentaire.
Les fonctions - Classe de seconde.
La valeur exacte de cos(0) est 1 .
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
L'expression fonction trigonométrique est un terme général utilisé afin de désigner, entre autres, l'une ou l'autre des fonctions suivantes: sinus, cosinus, tangente, sécante, cosécante, cotangente. On appelle aussi ces fonctions des fonctions circulaires.
En analyse numérique, la méthode de Simpson, du nom de Thomas Simpson, est une technique de calcul numérique d'une intégrale, c'est-à-dire le calcul approché de : Cette méthode utilise l'approximation d'ordre 2 de f par un polynôme quadratique P prenant les mêmes valeurs que f aux points d'abscisse a, b et m =⁄ 2.
La tangente d'un angle aigu est égale au quotient de son sinus par son cosinus.
Le sinus et la tangente d'un angle aigu seront introduits comme rapports de longueurs ou à l'aide du quart de cercle trigonométrique. On établira les formules : cos²x + sin²x = 1 ; tan x = sin x cos x On n'utilisera pas d'autre unité que le degré décimal.
Pour trouver la mesure de l'angle aigu à partir d'un cosinus, appuyez sur la touche 2nd (ou shift) puis COS (qui devient Cos-1) (ou Acs, ou Arccos), entrez la valeur du cosinus, puis appuyez sur enter. Ceci est utilisable seulement avec la calculatrice scientifique. Voilà, c'est tout.
Remarque L'hypoténuse est le côté le plus long du triangle. Théorème: Si un triangle est rectangle, alors le carré de la longueur de l'hypoténuse est égal à la somme des c carrés des longueurs des deux autres côtés.