Règle. La somme des angles intérieurs d'un triangle est toujours égale à 180∘ . Ainsi, il est possible de déduire la mesure du troisième angle lorsque les mesures des deux autres sont connues.
Quel que soit le triangle, la somme des mesures des trois angles est toujours égale à 180°.
La somme des mesures des angles d'un triangle vaut 180°. Article détaillé : Somme des angles d'un triangle. La somme des angles d'un triangle est égale à un angle plat, autrement dit la somme de leurs mesures vaut 180° (degrés) c'est-à-dire π radians. Cette propriété est une caractéristique de la géométrie euclidienne.
Les angles à la base d'un triangle isocèle sont égaux. Réciproquement, tout triangle ayant deux angles égaux est isocèle. Dans un triangle ABC isocèle en A, la médiane, la hauteur et la bissectrice toutes issues de A ainsi que la médiatrice de la base [BC] sont confondues.
Un triangle peut être scalène, isocèle ou équilatéral. Il peut aussi être acutangle, rectangle ou obtusangle !
Il existe quatre principaux types de triangles qui ont chacun des propriétés particulières : le triangle quelconque, le triangle isocèle, le triangle équilatéral et le triangle rectangle. Un triangle possède trois côtés, trois sommets et trois angles. On le nomme par les lettres qui se trouvent à chacun de ses sommets.
Un triangle quelconque possède 3 angles. Si tu connais la mesure de 2 angles, tu peux calculer la mesure du troisième angle. Il suffit de trouver la mesure manquante pour que la somme des 3 angles soit égale à 180°. Le troisième angle doit mesurer 30° pour que la somme des angles soit égale à 180°.
Deux propriétés importantes sur les triangles équilatéraux : Les trois angles d'un triangle équilatéral sont égaux et valent 60°. Un triangle équilatéral possède 3 axes de symétries, chacun de ces axes passe par un sommet et est la médiatrice du côté opposé au sommet.
En géométrie, un triangle rectangle est un triangle dont l'un des angles est droit, c'est-à-dire qu'il mesure 90°.
Un triangle ABC est rectangle et isocèle lorsque la longueur du côté [AB] est égale à la longueur du côté [AC] et que l'angle A vaut 90°.
D'après le théorème de Pythagore, le triangle ABC est rectangle si : BC² = AB² + AC². Ainsi, d'après le théorème de Pythagore, BC² = AB² + AC². Alors, le triangle ABC est rectangle en A. Son hypoténuse est [BC].
La règle du triangle de forces stipule que lorsque trois forces coplanaires agissant en un point sont en équilibre, elles peuvent être représentées en intensité et en direction par les côtés adjacents d'un triangle pris dans un certain ordre.
Grâce à la propriété de Pythagore
Si dans un triangle, le carré de la longueur du plus grand côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et l'angle droit est l'angle opposé au plus grand côté, et le plus grand côté de ce triangle est son hypoténuse.
Les angles dans les figures géométriques
La somme de ses angles fait toujours 180°. Les triangles particuliers ont d'autres propriétés sur leurs angles : Le triangle isocèle : ses angles à la base sont égaux. Le triangle équilatéral : chacun de ses angles mesure 60°.
Un triangle obtusangle. En géométrie euclidienne, la somme des mesures des angles intérieurs d'un triangle étant toujours égale à 180°, un triangle ne peut avoir plus d'un angle obtus.
Un angle aigu est un angle qui mesure moins de 90°. Un angle droit est un angle qui mesure 90°. Un angle obtus est un angle qui mesure plus de 90°.
Triangle isocèle
La somme des angles d'un triangle est égale à 180°. On a donc : + + = 180°.
De fait, tout triangle dont la somme de deux angles mesure 90° est nécessairement un triangle rectangle. Un triangle rectangle comportant deux côtés égaux est isocèle. Tout triangle comportant deux angles de 45° chacun est un triangle rectangle isocèle.
Dans un triangle rectangle ABC, où l'angle droit est B, l'hypoténuse est donc le côté AC. Pythagore a ainsi théorisé que le carré de la longueur de l'hypoténuse est égal à la somme des carrés des 2 autres côtés (soit dans notre exemple, AC2 = AB2 + BC2).
Dans un triangle rectangle isocèle, les angles adjacents à la base valent 45°.
[AB] et [AC] sont les côtés de l'angle droit, [BC] est l'hypoténuse. Nous pouvons appliquer le théorème de Pythagore et écrire : BC2 = AB2 + AC2. Alors AC2 = BC2 − AB2 ou encore AC2 = 18,752−152.
Passons aux explications : Les 3 angles du haut de la figure a, b et c forment un angle dit “plat”. C'est à dire que la somme des angles a, b et c fait 180° : a + b + c = 180°. On fait ensuite le même raisonnement avec c et e : l'angle a en haut à droite est le même que l'angle e en bas à droite.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.