L'image de 0 par la fonction f est 0.
Les images des nombres – 1.5 ; 2.5 ; – 4 et 3.4 par la fonction h sont respectivement – ; 0.4 ; – 0.25 et . L'image de 0 par la fonction h n'existe pas.
L'image de 0 par f est 0 + 3 = 3, soit f(0) = 3. L'antécédent de 3 par f est 0. L'image de 25 est , soit f(25) = 5. L'antécédent de 5 par f est 25.
Dans une fonction, une image est la grandeur obtenue à partir d'une fonction appliquée à un antécédent. Un nombre x ne peut avoir qu'une seule image y par la fonction f.
RAPPEL : Calculer une image : Pour calculer l'image d'un nombre par une fonction f [f : x → f(x)], il faut tout simplement remplacer x par la valeur de ce nombre.
L'image d'un nombre x par une fonction f est le nombre f(x) qui lui est associé par cette fonction f. Calculons l'image de 3 par la fonction f. Il s'agit en fait de calculer la valeur prise f(x) lorsque x = 4. Il s'agit donc de remplacer x par 4 dans l'expression de f.
4 est l'image de 8.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
Pour trouver l'ensemble image, nous devons trouver toutes les valeurs possibles que 𝑥 + 1 peut prendre. Puisque 𝑓 ( 0 ) = 1 est la plus petite valeur et que lorsque 𝑥 augmente (ou diminue), 𝑓 ( 𝑥 ) augmente, on peut conclure que l'intervalle est l'intervalle de 1 à l'infini. C'est-à-dire 𝑓 ( 𝑋 ) = [ 1 ; + ∞ [ .
Pour une fonction donnée f : X → Y, l'ensemble de définition est X et l'ensemble d'arrivée est Y. L'image f(X) de X par f, aussi appelée l'image de f, est en général seulement un sous-ensemble strict de Y. On a f(X) = Y si et seulement si f est une surjection.
Si nous donnons 5 comme valeur à , l'image de 5 par la fonction sera 5 2 + 3 = 28 .
Astuce : Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
L'image d'un nombre x par une fonction f est le nombre f(x) qui lui est associé par cette fonction f.
L'image de -2 par la fonction h est 21.
Déterminer des images et des antécédents dans le cas de fonctions affines Exercice. On donne la fonction affine f d'expression f(x)=-9x+7. Quelle est l'image de 4 par la fonction f ? L'image de 4 par la fonction f est −29.
a/ Pour résoudre l'inéquation f(x) < 0, on repère la portion de courbe au dessous de l'axe des abscisses (Ox) : les abscisses correspondantes donnent l'ensemble solution. Si l'inéquation à étudier est f(x) ≤ 0, on prend également les abscisses des points d'intersection. donnent l'ensemble solution.
Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure.
Sa dérivée est toujours positive (ou nulle pour x = 0).
On dit que 9 est l'image de -3 par la fonction f.
Quelle est l'image de 6 par la fonction f ? L'image de 6 par la fonction f est 3.
On donne la fonction affine f d'expression f(x)=x+3. Quelle est l'image de 3 par la fonction f ? L'image de 3 par la fonction f est 6.
Calcul de valeurs
o Pour calculer l'image d'un nombre, on remplace x par le nombre dans la forme algébrique, puis on calcule normalement. Par exemple : g(-2) = 3 x (-2)² -1 Donc g(-2) = 11. 11 est l'image de -2 par la fonction g.
Le seul antécédent de 4 par f est -2.
Quels sont les antécédents de 3 par la fonction f ? L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0.