( XIV e siècle) Via le latin médiéval algebra , de l'arabe الجبر , āl-ǧabr (« s'assurer par l'expérience de quelque chose ») avec agglutination de l'article.
Étymologie. Le mot « algèbre » est dérivé du titre d'un ouvrage rédigé vers 825, Kitāb al-mukhtaṣar fī ḥisāb al-jabr wa-l-muqābala (« Abrégé du calcul par la restauration et la comparaison »), du mathématicien d'origine persane Al-Khwarizmi.
Voici près d'un millénaire, les mathématiciens arabes ont élaboré des méthodes de calculs systématiques, prémices du calcul algorithmique. De cette élaboration naît aussi l'algèbre. Muhammad al-Khwarizmi naquit probablement entre 780 et 800 à Chiwa (Ouzbékistan) et mourut vers 850 à Bagdad.
Ce mot arabe figurait dans le titre d'un traité de mathématiques du IXe siècle qui s'est diffusé en Occident, dont l'auteur est le savant persan Al-Khuwarizmi. En arabe, le mot correspondant est al-djabr , qui signifie « la réduction, la contrainte ».
1800 av. J. -C. Les origines de l'algèbre.
Al Khwârizmî est né vers 780 et mort vers 850. Malgré son utilité dans le monde des mathématiques, le savant reste mal connu.
On les croyait créés par les grands mathématiciens arabes, en réalité les chiffres sont d'origine indienne. C'est en effet l'Extrême-Orient qui invente l'écriture décimale positionnelle au IIIe siècle avant J. -C.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Al-Khwarizmi, dont le nom a été latinisé en Algoritmi, est considéré de nos jours comme le père de l'algèbre et le fondateur des mathématiques arabes.
La différence entre l'algèbre et la mathématique est que : l'algèbre traite les problèmes finis tandis que l'analyse traite les problèmes infinis.
Les mathématiciens grecs les plus célèbres sont probablement Pythagore et Euclide, mais le véritable père de la géométrie est Thalès.
Voilà une croyance fermement ancrée : les mathématiques seraient une invention grecque. C'est pourquoi l'on enseigne encore aujourd'hui aux enfants le théorème de Thalès, le théorème de Pythagore ou les éléments d'Euclide.
Leonhard Euler (1707-1783). Né à Bâle en 1707, Leonhard Euler se destine d'abord à l'église, avant que des leçons privées avec le mathématicien Jean Bernoulli lui fassent découvrir sa passion pour les mathématiques.
Les mathématiques constituent une science d'étude des quantités, des ordres, des espaces, des nombres et des figures. Aussi appelées la « Reine des sciences », les mathématiques se divisent en 3 grandes catégories : l'analyse, la géométrie et l'algèbre.
Le mot algorithme vient d'Al-Khwârizmî (en arabe : الخوارزمي), nom d'un mathématicien persan du IX e siècle. Le domaine qui étudie les algorithmes est appelé l'algorithmique.
En France, la « réforme des maths modernes » fut lancée sous l'impulsion de la Commission ministérielle d'étude pour l'enseignement des mathématiques, présidée par André Lichnerowicz, communément appelée « Commission Lichnerowicz ».
Plusieurs règles de l'islam ont poussé les fidèles à améliorer calculs et observations astronomiques. Un premier motif est le calendrier musulman et plus précisément la détermination de la période du Ramadan. Ce calendrier s'appuie sur des mois lunaires et nécessite de déterminer le mouvement de la lune.
Al-Khwarizmi, considéré comme le père de l'algèbre, était un mathématicien et un astronome qui a vécu au 9e siècle. Il a apporté à l'Occident les chiffres et le système décimal.
Le symbole de l'infini a été utilisé pour la première fois par le mathématicien John Wallis, en 1655.
Les chiffres «arabes» actuels sont nés d'une transformation au Moyen-Orient de la notation née en Inde il y a seize ou dix-sept siècles. D'ailleurs, en langue arabe, les chiffres sont dits «indiens» quand, en langue française, on les dit «arabes».
Le plus petit nombre entier n'existe pas. En effet, les nombres entiers sont les nombres entiers relatifs, qui incluent les nombres entiers négatifs, jusqu'à la limite de l'infini négatif. En revanche, le plus petit des nombres entiers naturels est 0, et le plus petit nombre entier naturel non nul est 1.
Il faut savoir que des mathématiciens sont allés encore plus loin. Ils ont nommé un nombre encore plus grand : le "Googolplex", c'est un 1 suivi d'un googol de zéros, un nombre si immense qu'il y a davantage de zéros dans l'écriture de ce nombre que d'atomes dans l'univers.
Un chiffre est tout d'abord un caractère utilisé pour représenter un nombre. En français, on utilise les chiffres arabes (0 à 9) et, dans certains contextes, les chiffres romains (I, V, X, L, C, D, M).
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.