Comment montrer qu'une fonction est continue et dérivable ?

Interrogée par: Emmanuelle Verdier-Wagner  |  Dernière mise à jour: 14. Dezember 2024
Notation: 4.3 sur 5 (7 évaluations)

Si la fonction f est continue sur I et si fs est continue en a alors f est dérivable en a. Pour une fonction continue sur I, l'existence d'une dérivée symétrique positive suffit pour affirmer que f est croissante et l'existence d'une dérivée symétrique constamment nulle suffit pour prouver que f est constante.

Comment justifier qu'une fonction est continue ?

Une fonction 𝑓 ( 𝑥 ) est continue si elle respecte les trois conditions suivantes :
  1. 𝑓 doit être défini en 𝑎 ( 𝑎 appartient à l'ensemble de définition de 𝑓 ) ;
  2. l i m  →  𝑓 ( 𝑥 ) doit exister ;
  3. l i m  →  𝑓 ( 𝑥 ) et 𝑓 ( 𝑎 ) doivent avoir la même valeur.

Comment savoir qu'une fonction est dérivable ?

f (x0) = f1 (x0) + if2 (x0). On dit qu'une fonction f est dérivable sur un intervalle I lorsque f est dérivable en tout point de I. On note f la fonction dérivée de f qui à tout x ∈I associe f (x). Si g ne s'annule pas sur I, f g est aussi dérivable sur I et ( f g ) = f g − fg g2 .

Comment justifier qu'une fonction est dérivable sur R ?

Une fonction f:I→R f : I → R est donc dérivable en a si et seulement s'il existe α∈R α ∈ R et une fonction ε définie dans un intervalle J ouvert contenant 0 , vérifiant limh→0ε(h)=0 lim h → 0 ε ( h ) = 0 tels que ∀h∈J, f(a+h)=f(a)+αh+hε(h). ∀ h ∈ J , f ( a + h ) = f ( a ) + α h + h ε ( h ) .

Comment montrer que f est continue sur R+ ?

Lorsque a ∈ Z, on a si x → a+, f(x) → a = f(a) et si x → a−, f(x) = a − 1+(a − (a − 1))2 = a = f(a). Donc f est continue sur R.

Etudier la continuité d'une fonction - Terminale

Trouvé 24 questions connexes

Est-ce que toute fonction continue est dérivable ?

Dérivabilité et continuité

La dérivabilité d'une fonction ne se cherche donc qu'en des points où la fonction est déjà continue. La réciproque de cette affirmation est fausse : il existe des fonctions continues en a mais non dérivables en ce point.

Comment montrer que f est prolongeable par continuité ?

On dit que f est prolongeable par continuité en x0 s'il existe une fonction g : D ∪ {x0} → R continue en x0 telle que g|D = f. Proposition 2.2.6. Soit f : D → R une fonction, et soit x0 ∈ D\D. Alors f est prolongeable par continuité en x0 si et seulement si f admet une limite (finie) en x0.

Quand une fonction n'est pas dérivable ?

Une fonction n'est pas dérivable en un réel a de son domaine si notamment la dérivée à gauche en ce point est différente de la dérivée à droite en ce même point.

Comment montrer la continuité d'une fonction sur un intervalle ?

f est une fonction définie sur un intervalle I et a est un nombre réel de I.
  1. f est continue en a si, et seulement si, f f f a une limite en a a a égale à f ( a ) f(a) f(a) , ainsi : lim ⁡
  2. f f f est continue sur I I I si, et seulement si, f f f est continue en tout nombre réel de I I I.

Comment savoir si une fonction est dérivable graphiquement ?

Sommaire. On peut déterminer graphiquement la valeur de la dérivée d'une fonction f en un réel a, en utilisant la tangente à la courbe représentative de f au point d'abscisse a. On considère la fonction f, dont la courbe représentative C_f est donnée ci-dessous. T_0 est la tangente à C_f au point d'abscisse 0.

Qu'est-ce que ça veut dire dérivable ?

Se dit d'une fonction qui a une dérivée. (On distingue, selon les cas, les fonctions dérivables à droite ou à gauche, dérivables sur un intervalle ouvert ou fermé, dérivables n fois ou indéfiniment dérivables.)

Quand Est-ce que une fonction est continue ?

Définition intuitive : Une fonction est continue sur un intervalle, si sa courbe représentative peut se tracer sans lever le crayon. Étudier graphiquement la continuité des fonctions et définies et représentées ci-dessous sur l'intervalle [−2 ; 2].

Comment déterminer la continuité ?

Notion de continuité

On dit qu'une fonction f est continue en a si lim(x→a)⁡ f(x)= f(a). On dit qu'une fonction f est continue sur un intervalle I si pour tout x_0∈I lim(x→x0)⁡f(x) = f(x0).

C'est quoi la continuité d'une fonction ?

Cette définition exprime que, pour tout point de I , f ( x ) est voisin de f ( x 0 ) quand est voisin de . Plus précisément : pour tout point et tout voisinage V ( f ( x 0 ) ) il existe un voisinage V ( x 0 ) tel que, si appartient à V ( x 0 ) , f ( x ) appartient à V ( f ( x 0 ) ) .

Comment étudier la Dérivabilité d'une fonction en un point ?

Lorsque l'on commence à étudier les dérivées, on commence par deux définitions importantes ; tout d'abord, la dérivée est la pente de la tangente à la courbe représentative en un point ; ensuite, la dérivée est définie par une limite et n'existe donc que si cette limite existe.

Comment étudier la dérivabilité d'une fonction réciproque ?

D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.

Comment montrer qu'une fonction est continue en 0 0 ?

Autrement dit, on voit graphiquement qu'une fonction est continue en un point x0 si la courbe passe par le point M0(x0 ; ƒ(x0)) sans coupure. Sinon, la fonction est discontinue en ce point. Soit la fonction f définie sur par f(x) = x2+ 3x + 4 si x > 1 ; f(x) = 5 + 3x si x ≤ 1. et f(1) = 5 + 3 × 1 = 8.

Comment montrer que la fonction réciproque est dérivable ?

D'après le théorème des fonctions réciproques, la fonction est dérivable en tout point image d'un tel que. Mais on a : f ′ ( x ) = 0 ⇔ x = 0 , donc est dérivable en tout point autre que. Donc est dérivable sur. Représentation graphique de et de dans un repère orthonormé.

Comment montrer que f est deux fois dérivable ?

Prenons f(x)=x3sin(1x2), f est prolongeable par continuité en 0 et on a f(0)=0. f est aussi dérivable en 0 et on a f′(0)=0. Maintenant en considérant la définition de la 2-dérivabilité ci-dessus, on montre f est 2 fois dérivable en 0.

Comment montrer que F 1 est dérivable ?

Démonstration : 4)

Soit x = f − 1 ( y ) ; on a x 0 = f − 1 ( y 0 ) et par conséquent. Or est continue, donc quand tend vers y 0 , x = f − 1 ( y ) tend vers x 0 = f − 1 ( y 0 ) et le rapport x − x 0 f ( x ) − f ( x 0 ) a une limite puisque est dérivable en et que sa dérivée f ′ ( x 0 ) est non nulle.

Comment savoir si une fonction est dérivable en 0 ?

Pour que la fonction valeur absolue soit dérivable en 0, il doit exister un réel unique L tel que tende vers L lorsque h tend vers 0. Or : si h > 0, donc on aurait L = 1 ; si h < 0, donc on aurait L = −1.

Quand Dit-on qu'une fonction est dérivable en un point ?

Soit f : [a, b] → R une fonction. (1) Soit x0 ∈]a, b[. Alors f est dérivable en x0 si et seulement si f est dérivable `a droite et `a gauche en x0 et fg(x0) = fd(x0). (2) f est dérivable en a si et seulement si f est dérivable `a droite en a.

Article précédent
Pourquoi choisir Le Creuset ?
Article suivant
Quel champagne avec du chocolat ?