L'intégrale de la fonction f sur [ a ; b ] notée est en unités d'aire, la différence entre : les aires situées au dessus de (Ox) et les aires situées en dessous de (Ox).
Pour conceptualiser l'intégrale, il faut imaginer que tu resserres de plus en plus l'espace vide qui subsiste entre ces points (en en rajoutant plein), jusqu'à ce que tu passes d'un point à un autre sans voir la différence. L'intégrale est en fait une somme qui se calcule généralement sur un ensemble infini.
Le volume d'un cylindre droit P = D×[0, h] (de base D et de hauteur h) se ramène à l'intégrale double ∬Dh dxdy sur le domaine D du plan xy. On retrouve ainsi, dans le cas particulier d'un cylindre droit, la formule classique : Volume d'un cylindre = aire base × hauteur.
En mathématiques, l'intégrale d'une fonction réelle. positive est la valeur de l'aire. du domaine délimité par l'axe des abscisses et la courbe. représentative de la fonction.
Intégrale et primitives
L'intégrale de la fonction nulle est nulle sur tout intervalle inclus dans l'ensemble des réels ; les primitives de la fonction nulle (sur ℝ) sont donc les fonctions constantes.
La différence entre primitive et intégrale est qu'une primitive est une fonction tandis qu'une intégrale est un réel exprimé comme une aire algébrique (pouvant être négatif).
Valeur de 0!
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
Le concept d'intégrale a été raffiné depuis son introduction au XVII e siècle par Leibniz et Newton, permettant ainsi de les calculer pour des fonctions de moins en moins régulières. On rencontre ainsi aujourd'hui les intégrales dites de Riemann, de Lebesgue ou de Kurzweil-Henstock.
Calcul d'une intégrale
Comme 32÷3≈10,67, l'intégrale de f entre 0 et 4 fait environ 10,67. Si une unité du graphique correspond à 10 mètres sur le terrain, alors une unité d'aire vaut 100 m² et l'aire réelle du champ mesure environ 1067 m².
On appelle intégrale de f entre a et b le nombre F(b) – F(a). et se lit : « intégrale de a à b de f(t) dt », a et b étant les bornes de l'intégrale. Remarques : Ce nombre est indépendant de la primitive F choisie. En effet si G est une autre primitive de f, alors G = F +k et donc G(b) – G(a) = F(b) – F(a).
La formule du calcul de volume. Elle dépend de la forme dont on souhaite calculer le volume. Par exemple, pour calculer le volume d'un parallélépipède, la formule est : Volume = Longueur x Largeur x Hauteur. Nous allons voir par la suite comment procéder au calcul de volume de chaque forme.
1 mètre cube se note 1 m3. Donc, pour trouver le volume d'un pavé droit, par exemple une piscine, il suffit de connaître sa longueur, sa largeur et sa profondeur exprimées dans la même unité et de multiplier les 3 entre elles : longueur x largeur x profondeur (ou hauteur).
Comment utiliser la formule du volume d'une sphère : V = 4/3πr³. Créés par Sal Khan et Monterey Institute for Technology and Education.
Considérons la fonction f définie sur R par f(x)=3x2. La fonction F définie sur R par F(x) = x3 est une primitive de f sur R puisque F′(x) = f(x). La fonction G définie sur R par G(x) = x3 + 2 est aussi une primitive de f sur R puisque G′(x) = f(x). √x2 + 3 = f(x).
Aire sous la courbe dans le cas des fonctions non positives
Dans le cas des fonctions négatives, l'intégrale vaut bien l'aire entre la courbe et l'axe des abscisses, mais avec un signe négatif devant. Une aire reste toujours positive alors qu'une intégrale d'une fonction négative est négative.
L'existence d'une intégrale peut être justifiée à l'aide de plusieurs théorèmes mathématiques tels que le théorème de convergence monotone et le théorème de convergence dominée. Ces théorèmes garantissent l'existence de l'intégrale sous certaines conditions.
Si, pour tout entier naturel n, I_{n+1}-I_{n}\geqslant 0, on en déduit que la suite est croissante. Si, pour tout entier naturel n, I_{n+1}-I_{n}\leqslant 0, on en déduit que la suite est décroissante.
L'intégrale ∫badx(x−a)α ∫ a b d x ( x − a ) α est convergente si et seulement si α<1 .
Le premier moment de l'histoire des mathématiques s'identifie néanmoins aux Grecs, qui, à partir du VIe siècle avant J. -C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
La surface comprise entre la courbe d'équation y = exp(−x2) et l'axe des abscisses vaut √π. où α est un paramètre réel strictement positif. Elle intervient dans la définition de la loi de probabilité appelée loi gaussienne, ou loi normale.
Pour aider son père, qui, par sa profession, passe son temps à faire des calculs, Pascal invente la toute première machine à calculer capable d'effectuer des additions et des soustractions. Il n'a alors que 19 ans ! À l'époque, les calculs se font avec des jetons ou en posant toutes les additions.
Nom commun. (Mathématiques) Résultat de la multiplication d'un nombre entier par tous les nombres entiers supérieurs à 0 inférieurs à celui-ci. La factorielle de 5, qu'on note 5!, est égale à 5×4×3×2×1, soit 120.
Pourquoi 0 puissance 0 est égal à 1 ? Tout nombre non nul élevé à la puissance 0 donne 1 par convention. Mais 0^0 est une forme indéterminée. Par exemple la limite de x^x est de la forme 0^0 quand x→0 (sans atteindre 0).
Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
Une intégrale impropre est convergente si sa valeur est finie, dans le cas contraire elle est divergente.