Teredo est une méthode qui permet de pallier ce problème en encapsulant le paquet IPv6 non plus directement dans un paquet IPv4 mais dans un paquet UDP/IPv4.
La coexistence IPv4-IPv6 peut être obtenue principalement par trois techniques. La première est la double pile (Dual Stack) , où votre matériel réseau supporte simultanément IPv4 et IPv6. La deuxième est un tunnel, c'est-à-dire l'encapsulation de paquets IPv6 dans des paquets IPv4.
Dans l'approche double pile, la première phase de la transition consiste à doter les hôtes IPv4, et les serveurs en particulier, à la fois d'adresses IPv6 et IPv4 de façon à leur permettre de communiquer aussi bien avec les hôtes IPv4 et IPv6. Les îles IPv6 sont interconnectées par des tunnels IPv6 sur IPv4.
Les étapes de base pour la migration d'un réseau IPv4 vers un réseau IPv6 implique de supprimer d'abord toutes les adresses IPv4 DHCP et adresses IP statiques existantes, puis de reconfigurer autant de nouvelles adresses IPv6 que nécessaire.
Pourquoi passer d'IPv4 à IPv6 ? En raison de la croissance rapide d'Internet, il est nécessaire d'améliorer le schéma d'adressage IPv4 pour prendre en charge l'afflux de nouveaux abonnés, d'appareils et d'applications compatibles avec Internet.
Pour répondre à la pénurie des adresses IPv4, certains mécanismes de substitution ont été mis en place par des FAI. Les équipements Carrier-grade NAT (CGN) permettent par exemple partager une adresse IPv4 entre plusieurs clients.
L'adresse IPv4 compte 4 octets, au format décimal, séparés par un point. Cela donne une adresse d'une taille de 32 bits, correspondant à 4,3 milliards d'adresses IP uniques. L'IPv6 a quant à elle été créée en 1990. Elle compte 16 octets, au format hexadécimal, qui sont séparés par deux points.
Une adresse IPv6 est longue de 128 bits et se compose de huit champs de 16 bits, chacun étant délimité par deux-points (:). Chaque champ doit contenir un nombre hexadécimal, à la différence de la notation en format décimal avec points des adresses IPv4.
Parce que c'est mathématiquement impossible. Nous avons atteint la limite du format d'adresse IPv4. C'est pour ça que progressivement tout le monde passe en IPv6 qui offre environ 667 millions de milliards d'adresses.
Bouygues Telecom a mené un déploiement notable sur les réseaux mobiles, avec 87% de clients Android et plus de 99% de clients iPhone activés en IPv6 à mi-2021. Le déploiement d'IPv6 sur le réseau mobile d'Orange est aussi à noter (47% de clients Android et 66% de clients iPhone activés en IPv6).
Principes. L'autoconfiguration avec état vise à réduire les efforts d'installation des machines IPv6, tout comme l'autoconfiguration sans état d'ailleurs. A la différence de cette dernière, elle offre une information de configuration plus riche et un contrôle sur l'affectation des paramètres de configuration.
Les avantages de l'IPv6 :
Au-delà de l'espace d'adressage beaucoup plus important, il est à noter d'autres avantages à mettre au crédit de l'IPv6 : Routage plus efficace : IPv6 réduit la taille des tables de routage et rend le routage plus efficace et hiérarchisé. Meilleure sécurité : avec l'intégration native d'IPSec.
Tout d'abord, IPv6 signifie Internet Protocol version 6. IPv6 est une adresse qui prend en charge notre utilisation des appareils Internet. IPv6 est le successeur d'IPv4.
Une adresse IPv4 est un nombre de 32 bits identifiant de manière unique une interface réseau sur un système, comme expliqué à la section Application d'adresses IP aux interfaces réseau. Une adresse IPv4 s'écrit sous forme de nombres décimaux, divisés en quatre champs de 8 bits séparés par des points.
Quels sont les messages ICMP utilisés par les protocoles ipv4 et IPv6 ? Les datagrammes ICMP sont transportés à l'intérieur de datagrammes IPv6 dans lequel un en-tête d'extension peut aussi être présent. Un message ICMP est identifié par sa valeur 58 (0x3A) positionnée dans le champ Next Header de l'en-tête IPv6.
Les adresses IPv4 se composent de deux parties. Les premiers nombres spécifient le type de réseau, tandis que les derniers permettent de déterminer l'hôte de façon précise. Un masque de sous-réseau spécifie la partie de l'adresse qui correspond au réseau, et celle qui désigne un hôte spécifique.
TCP est un protocole orienté connexion, c'est-à-dire qu'il permet à deux machines qui communiquent de contrôler l'état de la transmission. Les caractéristiques principales du protocole TCP sont les suivantes : TCP permet de remettre en ordre les datagrammes en provenance du protocole IP.
Lors d'une communication entre deux postes, le flux de données provenant de la couche transport — niveau 4 du modèle OSI — (par exemple des segments TCP) est encapsulé dans des paquets par le protocole IP lors de leur passage au niveau de la couche réseau.
TCP et IP sont deux protocoles de réseau informatique distincts. IP est la partie qui obtient l'adresse à laquelle les données sont envoyées. TCP est responsable de la livraison des données une fois que cette adresse IP a été trouvée. Il est possible de les séparer, mais il ne sert à rien de différencier TCP et IP.
Le protocole IGRP, donc Interior Gateway Routing Protocol, le protocole EIGRP, donc Interior Gateway Routing Protocol en mode avancée et enfin, le dernier, celui qui est le plus utilisé dans le monde public côté internet, qui est le protocole SPF.
Le protocole DHCP (Dynamic Host Configuration Protocol) est un protocole client/serveur qui fournit automatiquement un hôte IP (Internet Protocol) avec son adresse IP et d'autres informations de configuration associées, telles que le masque de sous-réseau et la passerelle par défaut.