Quelles sont les deux façons de définir une suite ?

Interrogée par: Xavier Pottier  |  Dernière mise à jour: 3. Juni 2024
Notation: 4.4 sur 5 (43 évaluations)

Une suite peut être définie de manière explicite (la valeur de chaque terme est directement donnée) ou par récurrence (la valeur d'un terme est donnée en fonction du terme précédent).

Quels sont les 2 types de suites ?

Les types de suites numériques souvent rencontrées sont les suites arithmétiques et les suites géométriques. Les suites arithmétiques sont les suites où la différence entre deux termes consécutifs est une constante. En revanche, pour les suites géométriques, le quotient de deux termes consécutifs est une constante.

Quelles sont les caractéristiques d'une suite ?

Définition : Une suite est une « succession » de nombres réels. Ces nombres réels sont les termes de la suite. Une suite (un) associe, à tout entier n, un nombre réel noté un et appelé le terme général de la suite. La notation un est la notation indicielle, n est appelé l'indice ou le rang.

Comment décrire une suite ?

Pour décrire une suite en mots, on donne l'un des termes et on indique sa raison. Le premier terme de la suite est 1 et la régularité est +2.

Comment caractériser une suite ?

Une suite est une succession de nombres réels (appelés termes de la suite), comme par exemple 2,5,8,... Le mode de génération d'une suite est la façon dont cette suite est définie. Dans notre exemple, 2,5,8, chaque terme est obtenu en "ajoutant 3" au terme précédent.

Déterminer l'expression d'une suite - Première

Trouvé 34 questions connexes

Qu'est-ce que définir une suite ?

2. Nouvel épisode de quelque chose qui n'est pas terminé : Ce roman a une suite. 3. Ensemble de personnes ou de choses qui se suivent ; succession : La rue est bordée d'une suite de grands hôtels.

Quelle peut être la nature d'une suite ?

Certaines suites ont des propriétés particulières, comme les suites arithmétiques et les suites géométriques. De telles suites sont définies par récurrence, mais on peut calculer leur terme général en fonction du rang, ainsi que la somme des premiers termes.

Quel est la nature d'une suite ?

La nature d'une suite (convergence ou divergence) ne dépend que de son comportement quand n → + ∞ ; on dit encore à partir d'un certain rang. On peut en particulier modifier les termes d'une suite pour un nombre fini d'indices sans en changer la nature.

Comment justifier qu'une suite est bien définie ?

(un) est bien définie si ∀n, un+1 ≥ 0, c'est `a dire si un ≥ −1. Pour tout choix de u0 ∈ [−1, +∞[, on aura alors ∀n ≥ 1,un ≥ 0 (récurrence immédiate), et donc la suite sera bien définie.

Quel est le signe d'une suite ?

Méthode pour étudier le sens de variation d'une suite

Calculer et étudier le signe de u n + 1 − u n pour tout : Si pour tout , u n + 1 − u n ≥ 0 alors la suite est croissante. Si pour tout , u n + 1 − u n ≤ 0 alors la suite est décroissante.

Comment définir une suite constante ?

lLa suite (un) telle que un = αn pour tout n, o`u α est un réel donné. Une suite est dite constante si il existe un réel x tel que un = x pour tout n. On parle aussi de suites constantes `a partir d'un certain rang.

Comment montrer qu'une suite est géométrique ou arithmétique ?

Autrement dit, une suite est géométrique si et seulement si chaque terme s'obtient en multipliant le précédent par un nombre réel q, toujours le même.

Comment justifier qu'une suite est définie pour tout entier naturel n ?

Suites arithmétiques et géométriques Une suite (un) est arithmétique à partir du rang n0 s'il existe un réel r tel que , pour tout entier n ≥n0 , un+1 = un + r . Une suite (un) est géométrique à partir du rang n0 s'il existe un réel q tel que , pour tout entier n ≥n0 , un+1 = q un .

Comment savoir si une suite est géométrique ?

S'il existe un réel q indépendant de la variable n tel que, pour tout entier naturel n, u_{n+1}=q\times u_n, on peut conclure que la suite est géométrique de raison q. On précise alors son premier terme.

Comment définir une suite arithmétique ?

Une suite arithmétique est une suite où chacun des termes est égal à la somme du terme précédent et d'un nombre fixe. Ce nombre fixe s'appelle la raison de la suite.

Qui a inventé les suites en maths ?

Elle en déduit alors les nombres qui suivent (5 + 8 = 13 ; 8 + 13 = 21 ; 13 + 21 = 37…). Cette célèbre suite porte le nom de Fibonacci, mathématicien italien du xiiie siècle.

Comment faire l'étude d'une suite ?

Pour déterminer le sens de variation d'une suite (un), on peut utiliser l'une des règles suivantes : a) On étudie le signe de la différence un+1 − un. ▶ Si un+1 − un est positive, alors la suite (un) est croissante. ▶ Si un+1 − un est négative, alors la suite (un) est décroissante.

Pourquoi on appelle une suite géométrique ?

Le qualificatif « géométrique » réfère au fait que, dans une suite géométrique à termes positifs, un terme quelconque (à l'exception du premier) est égal à la moyenne géométrique du terme qui le précède et de celui qui lui succède.

Quelle est la formule de la suite géométrique ?

u p + ⋯ + u q = ( q − p + 1 ) × ( u p + u q ) 2 . On retient souvent cette formule sous la forme : up+⋯+uq=(nb de termes)×(premier terme+dernier terme)2. u p + ⋯ + u q = ( nb de termes ) × ( premier terme + dernier terme ) 2 .

Comment trouver la raison d'une suite arithmétique ?

Formule de la raison d'une suite arithmétique

La raison d'une suite arithmétique, dont le premier terme u1 est égal à a , est donnée par la formule : r=un−an−1 r = u n - a n - 1 .

Comment savoir si une suite est croissante ou décroissante ?

Calculer un+1−un. Si pour tout entier naturel n, un+1−un⩾0 alors la suite (un) est croissante. Si pour tout entier naturel n, un+1−un⩽0 alors la suite (un) est décroissante.

C'est quoi une suite non monotone ?

(Mathématiques) Qualifie une fonction à une seule variable, qui n'est pas continue ou uniquement croissante ou décroissante dans un intervalle donné. Cette fonction est caractérisée par une courbe en forme de "U", elle est donc non-monotone.

Comment montrer que la suite est convergente ?

2/ Théorèmes de convergence

* Si (un) est croissante et majorée alors (un) converge. La suite « monte » mais est bloquée par « un mur » donc elle possède une limite finie. * Si (un) est décroissante et minorée alors (un) converge. La suite « descend » mais est bloquée par « un mur » donc elle possède une limite finie.

Comment justifier qu'une suite n'est pas géométrique ?

Solution. Calculons u 1 u 0 et u 2 u 1 : ² ² u 1 u 0 = 1 ² + 1 / 0 ² + 1 = 2 et ² ² u 2 u 1 = 2 ² + 1 1 ² + 1 = 5 2 . Ces deux nombres sont différents donc la suite ( u n ) n'est pas géométrique.

Article précédent
Comment mettre ma TV sur HDMI ?
Article suivant
Quel est l'homme le plus belle ?