le nombre 156 n'est pas un nombre divzar car ses diviseurs sont 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156. La somme de tous ses diviseurs sauf lui-même est plus grande que 156 : 1+2+3+4+6+12+13+26+39+52+78=236 > 156. Mais il existe une somme de certains de ses diviseurs qui lui est égale : 78+52+26=156.
1. Pour trouver le nombre de diviseurs de tout nombre, on décompose le nombre donné en facteurs premiers ; puis on fait le produit du nombre de diviseurs de chaque facteur. Par exemple, 180 a 18 diviseurs.
2/ PGCD (156; 130) = 26. Les diviseurs communs de deux nombres sont tous les diviseurs du plus grand commun diviseur (PGCD).
Ces deux nombres ont donc 22 × 3 en commun dans leurs décompositions en produit de facteurs premiers. Comme 22 × 3 = 12, le plus grand diviseur commun aux nombres 252 et 156 est donc 12.
Le nombre de diviseurs d'un entier n est le produit des puissances apparaissant dans sa décomposition en facteurs premiers, chacune augmentée de 1.
Un nombre B est un diviseur du nombre A si lorsqu'on divise A par B, on obtient un nombre entier sans qu'il n'y ait de reste. Si A est un multiple de B, alors B est un diviseur de A. 48 est un multiple de 6 car on peut trouver 48 en multipliant 6 par un nombre entier : 6 × 8 = 48.
En combinant les puissances des nombres mis en jeu, on liste l'ensemble des diviseurs demandés. Pour 364 : 1, 2, 7, 13, 22, 2 × 7, 2 × 13, 22 × 13, 7 × 13, 22 × 7 × 13. Pour 154 : 1, 2, 7, 11, 2 × 7, 2 × 11, 7 × 11, 2 × 7 × 11.
1. Les diviseurs de 90 sont : 1, 2, 3, 5, 6, 9, 10, 15, 18, 30, 45, 90. Les diviseurs de 126 sont : 1, 2, 3, 6, 7, 9, 14, 18, 21, 42, 63, 126.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.
Liste des diviseurs de 16 : 1, 2, 4, 8, 16 Liste des diviseurs de 9 : 1, 3, 9 Comme 1 est leur seul diviseur commun, alors 16 et 9 sont premiers entre eux.
Les diviseurs premiers de 588 sont donc : 2 ; 3 et 7. 6. b. Les diviseurs premiers de 27 000 000 sont 2 ; 3 et 5.
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 156) est la suivante : 1, 2, 3, 4, 6, 12, 13, 26, 39, 52, 78, 156. Pour que 156 soit un nombre premier, il aurait fallu que 156 ne soit divisible que par lui-même et par 1.
Méthode 2 : le tableau des diviseurs premiers
Cette méthode consiste à diviser simultanément les nombres étudiés par des diviseurs premiers. Le PGCD sera alors le produit de ces diviseurs premiers. Cette méthode est plus rapide et efficace lorsque l'on cherche le PGCD entre deux grands nombres.
Donc le PGCD de 125 et 175 est 5×5 = 25, donc les diviseurs communs de 125 et 175 sont ceux de 25, c'est-à-dire : 1, 5 et 25.