Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
2 est un nombre premier car il n'est divisible que par 1 (2 ÷ 1 = 2) et par lui-même (2 ÷ 2 = 1) ; 4 n'est pas un nombre premier car il admet 3 diviseurs : 1, 2 et 4 ; 123 n'est pas un nombre premier, car il est divisible par 3.
Contrairement au 12, certains nombres ne possèdent que 2 diviseurs, à savoir 1 et lui-même. Ce sont des nombres premiers. Exemple : 13 est un nombre premier, car il a pour diviseur 1 et 13.
Le nombre 15 n'est pas un nombre premier, car il a plus de deux diviseurs : div (15) = {1, 3, 5, 15}. Le nombre 9 n'est pas un nombre premier, car il a plus de deux diviseurs : div (9) = {1, 3, 9}.
Définition : Un nombre premier est un nombre qui n'a que deux diviseurs : 1 et lui-même. Exemples : 12 n'est pas un nombre premier car il est divisible par 1, 2, 3, 4, 6, 12. 1 n'est pas un nombre premier car il admet un seul diviseur, lui-même.
Définition 2 : Un nombre naturel est premier s'il est plus grand que 1 et qu'il n'est divisible que par 1 et par lui-même. »
Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
8 n'est pas premier car il est divisible par 1, 2, 4 et 8. 1 n'est pas premier car il a un seul diviseur, lui-même. 0 n'est pas premier car il est divisible par n'importe quel nombre non nul.
Un nombre premier unique : la période de l'expansion décimale de 1/101 est de 4 (0, 0099 0099 0099…) et c'est le seul nombre premier dans ce cas. La somme de cinq nombres premiers consécutifs : 13 + 17 + 19 + 23 + 29 = 101.
En revanche, il existe 15 nombres premiers palindromes possédant 3 chiffres : 101, 131, 151, 181, 2.
Un nombre premier est un nombre entier naturel non nul qui admet exactement 2 diviseurs distincts : 1 et lui-même. 17 est un nombre premier car il n'est divisible que par 1 et par 17. 23 est un nombre premier • 25 n'est pas un nombre premier car il a trois diviseurs : 1 ; 5 et 25.
Une astuce supplémentaire pour retenir les nombres premiers jusqu'à 20. Tous les multiples de 6 jusqu'à 20 ont deux nombres voisins qui sont des nombres premiers. 2 nombres premiers jumeaux sont deux nombres premiers s'il ne diffèrent que de 2. 6 x 1 = 6 → 5 et 7.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale. On doit cette performance (la vérification est en cours) au Gimps, le Great Internet Mersenne Prime Search.
Un nombre premier est un nombre entier positif qui admet exactement deux diviseurs : 1 et lui-même. 3 est un nombre premier car c'est un entier positif qui n'est divisible que par 1 et par lui-même. 6 n'est pas un nombre premier car il est divisible par 1, 2, 3 et 6.
Un nombre premier est un nombre entier qui possède exactement deux diviseurs distincts : 1 et lui même. Exemples: 5 est premier car il n'est divisible que par 1 et 5 ( lui même). 12 n'est pas premier car il est divisible par 1, 2, 3, 4, 6 et 12 soit 6 diviseurs.
Pour vous aider un peu, voici les nombres premiers de 0 à 100: 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.
Par exemple, le nombre entier 7 est premier car 1 et 7 sont les seuls diviseurs entiers et positifs de 7. Tout nombre pair étant multiple de 2, les nombres premiers sont par conséquent tous impairs, excepté le nombre 2 lui-même.
De plus, le nombre 0 ne peut pas être divisé par lui-même, car la division par 0 est une opération non définie. Il n'est donc pas un nombre premier. Le nombre 1 n'est pas considéré comme étant un nombre premier, car il ne possède pas 2 diviseurs différents. En effet, il n'a que 1 comme diviseur.
En tant que chiffre, il est utilisé pour « garder le rang » et marquer une position vide dans l'écriture des nombres en notation positionnelle. En tant que nombre, zéro est un objet mathématique permettant d'exprimer une absence comme une quantité nulle : c'est le nombre d'éléments de l'ensemble vide.
Concernant 231, la réponse est : Non, 231 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 231) est la suivante : 1, 3, 7, 11, 21, 33, 77, 231. Pour que 231 soit un nombre premier, il aurait fallu que 231 ne soit divisible que par lui-même et par 1.
Concernant 6, la réponse est : Non, 6 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 6) est la suivante : 1, 2, 3, 6. Pour que 6 soit un nombre premier, il aurait fallu que 6 ne soit divisible que par lui-même et par 1.
Le premier nombre parfait est 6. En effet 1, 2 et 3 sont les diviseurs propres de 6 et 1+2+3=6. 28 est également un nombre parfait : 1+2+4+7+14=28. Les nombres parfaits sont rares, il n'en existe que trois inférieurs à 1000 qui sont 6, 28 et 496.