Par exemple, les diviseurs positifs de 30 sont, dans l'ordre : 1, 2, 3, 5, 6, 10, 15 et 30.
Trouver les diviseurs d'un nombre
La technique pour trouver des diviseurs repose sur une propriété mathématique: Si la division de A par B est égale à C, alors B et C sont des diviseurs de A (A, B et C sont des nombres entiers). La division de 28 par 7 est égale à 4, donc 7 et 4 sont des diviseurs de 28.
Les diviseurs d'un nombre
L'ensemble des diviseurs d'un nombre correspond à tous les nombres entiers qui divisent ce nombre sans qu'il n'y ait de reste. 4 est un diviseur de 24 , car 24÷4=6 24 ÷ 4 = 6 . 5 n'est pas un diviseur de 24 , car 24÷5=4,8 24 ÷ 5 = 4 , 8 (Le quotient n'est pas un nombre entier).
Un nombre est divisible par 30 si la somme de ses chiffres est divisible par 3 et s'il se termine par 0. 96442710 est divisible par 30 car il se termine par 0 et 9 + 6 + 4 + 4 + 2 + 7 + 1 + 0 = 33 qui est divisible par 3. Le nombre est divisible par 31 si et seulement si est divisible par 31.
Grâce au crible ou tout autre moyen, listons les nombres premiers plus petits que 200 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197 et 199.
Les multiples de 30 sont : 30 , 60 , 90 , 120 , 150 , 180 , 210 , 240 , 270 , ... (il y en a une infinité).
A l'aide de la calculatrice, on obtient : PGCD(2730 ; 5610) = 30. Les diviseurs de 30 sont 1, 2, 3, 5, 6, 10, 15 et 30. Donc les diviseurs communs à 2730 et 5610 sont 1, 2, 3, 5, 6, 10, 15 et 30. Propriété : Soit a, b et k des entiers naturels non nuls.
Les diviseurs communs à 30 et 42 sont 1 ; 2 ; 3 et 6. Les diviseurs communs à 30 et 42 sont 1 ; 2 ; 3 et 10. Les diviseurs communs à 30 et 42 sont 1 ; 2 ; 3 et 7. Les diviseurs communs à 30 et 42 sont 1 ; 2 ; 3 et 15.
Il est possible de déterminer à l'aide de techniques mathématiques si un nombre entier est premier ou non. Concernant 32, la réponse est : Non, 32 n'est pas un nombre premier. La liste de ses diviseurs entiers (c'est-à-dire la liste des nombres entiers qui divisent 32) est la suivante : 1, 2, 4, 8, 16, 32.
Définition : On dit que deux nombres entiers sont premiers entre eux si leur seul diviseur commun est 1. Exemple : • Les diviseurs de 42 sont : 1,2,3,6,7,14,21,42.
Par exemple, l'ensemble des diviseurs de 15 est {1, 3, 5, 15}.
Un diviseur est un nombre avec lequel tu peux diviser un autre nombre en n'ayant pas le reste. Le nombre 20 a donc six diviseurs: 20, 10, 5, 4, 2 et 1.
Les diviseurs de 50 sont : 1;2; 5; 10 ; 25; 50. Donc : pgcd(25; 50) = 25 (car 50 est un multiple de 25).
20, 40, 60, 80, 100, 120, 140, 160, 180, etc. sont tous des multiples de 20. 30, 60, 90, 120, 150, 180, 210, etc. sont tous des multiples de 30.
Non, 2 530 n'est pas un nombre premier. Par exemple, 2 530 est divisible par 2 : 2 530 / 2 = 1 265. D'ailleurs, une astuce nous permettait de deviner immédiatement que 2 530 n'est pas premier puisqu'il est divisible par 5 : en effet, un nombre terminant par un 0 ou un 5 est forcément divisible par 5.
En arithmétique élémentaire, le plus grand commun diviseur ou PGCD de deux nombres entiers non nuls est le plus grand entier qui les divise simultanément. Par exemple, le PGCD de 20 et de 30 est 10, puisque leurs diviseurs communs sont 1, 2, 5 et 10.
Reprenons 30 et 48 : 30=2×3×5. 48=2×2×2×2×3. On remarque que le produit 2×3=6 est commun aux deux et est le plus grand produit commun, il est donc le PGCD.
Un diviseur commun à deux ou plusieurs nombres entiers est un nombre entier qui divise chacun d'eux. Exemple : 36 = 12 × 3 et 24 = 12 × 2. Donc 12 est un diviseur commun à 36 et à 24.
La factorisation première de 60 est 22 × 3 × 5. Les branches terminales révèlent la décomposition en facteurs premiers du nombre 60, soit : 60 = 2² × 3 × 5.
Décomposer un nombre entier, c'est l'écrire en montrant les différentes unités qu'il contient. On peut décomposer 3 524 de plusieurs manières : 3 524 = (3 x 1 000) + (5 x 100) + (2 x 10) + (4 x 1) 3 milliers, 5 centaines, 2 dizaines, 4 unités. 3 524 = (3 x 1 000) + (5 x 100) + 24 ® 3 milliers, 5 centaines, 24 unités.