Les trois formules suivantes sont à retenir : F1 : (a + b)2 = a2 + 2 × a × b + b2. F2 : (a − b)2 = a2 − 2 × a × b + b2.
L'égalité (a+b)² = a² + 2ab + b² est la première que l'on retrouve dans le livre II des Éléments d'Euclide.
puis on utilise l'identité (a - b)² = a² - 2ab + b².
(a+b)3 = a3 + 3a2b + 3ab2 + b3
Le volume du grand cube, de coté a+b, est la somme des volumes des huit parallélépipèdes colorés, dont un est caché.
Une équation de droite se présente sous la forme : y = ax + b avec a le coefficient directeur et b l'ordonnée à l'origine. Ici b = 0, car la droite coupe l'axe des ordonnées au point 0. Pour déterminer a, il suffit de se placer sur le point correspondant à l'ordonnée à l'origine (b).
( a + b ) ( a − b ) = a 2 − b 2 . On utilise souvent aussi celles de degré 3 : (a+b)3=a3+3a2b+3ab2+b3, ( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 , (a−b)3=a3−3a2b+3ab2−b3, ( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 , a3−b3=(a−b)(a2+ab+b2).
Pour factoriser une somme, il faut repérer le facteur commun aux différents termes de la somme. A : le facteur commun est x ; si l'on développe x(x − 5), on retrouve bien x2 − 5x. B : le facteur commun est 2x ; si l'on développe 2x(x − 3 + y), on retrouve bien 2x2− 6x + 2xy.
Si on développe le produit (a+b)(a-b), on obtient a²-b². Donc quels que soient a et b, a²-b² = (a+b)(a-b). Factoriser une somme ou une différence c'est l'écrire sous forme d'un produit.
2 - Les identités remarquables. En quatrième, nous avons vu comment développer une expression littérale en utilisant la distributivité a×(b+c)=a×b+a×c et la double distributivité (a+b)×(c+d)=a×c+a×d+b×c+b×d.
Étape 1 : Calcul du discriminant Δ = b² - 4ac. Si Δ < 0 : Pas de solution à l'équation ; Si Δ = 0 : Une seule solution S = -b/2a ; Si Δ > 0 : Deux solutions à l'équation S = {(-b-racine(Δ))/2a, (-b+racine(Δ))/2a}.
Développer signifie « passer d'un produit (une multiplication) à une somme (une addition) ». Avec les identités remarquables, cela signifie, par exemple, passer de : (a + b)² → a² + 2ab + b² ou encore de. (a + b) (a – b) → a² – b²
Factoriser une expression littérale ou numérique, c'est transformer une somme ou une différence en un produit, c'est l'inverse du développement. $A = {5} \times (x+{3})$ On écrit entre parenthèses les deux autres facteurs. Si les produits ne sont pas apparents, il faut les faire apparaître.
Pour factoriser une expression de la forme a²+2ab+b², on utilise l'identité remarquable (a+b)². Par exemple, x²+10x+25 peut être écrit sous la forme (x+5)². Cette méthode est basée sur la reconnaissance de l'identité remarquable (a+b)²=a²+2ab+b² (qu'on peut toujours vérifier en développant le produit (a+b)(a+b)).
Une expression factorisée est l'écriture d'un produit. L'expression factorisée est 2 × (L + l). 2 × (a + b − 2) = 2 × a + 2 × b − 2 × 2 = 2a + 2b - 4. 5 + 15a + 5 = 5 × 9 + 5 × 3a + 5 × 1 = 5 × (9 + 3a + 1).
Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
Elles servent en général à accélérer les calculs, à simplifier certaines écritures, à factoriser ou à développer des expressions. Elles servent pour la résolution des équations du second degré et sont plus généralement utiles pour la recherche de solutions d'équations.
Pour calculer le volume d'un pavé droit, on applique la formule suivante : V = L × l × h (avec L la longueur, l la largeur et h la hauteur du pavé droit). Pour calculer le volume d'un cube, on applique la formule suivante : V = a3 (avec a l'arête du cube).
Factoriser un polynôme du second degré consiste à l'écrire sous la forme d'un produit de polynôme du premier degré. Ce n'est possible que si la fonction polynôme possède 1 ou 2 racines. Une fonction polynôme de degré 2 s'écrit sous la forme où , , sont des réels avec .
m et p sont deux nombres donnés. La fonction f qui associe à tout nombre x le nombre mx + p est une fonction affine. Son expression algébrique s'écrit : f(x) = mx + p. m est le coefficient directeur de la fonction et on ajoute p au résultat.
Une fonction f définie sur est une fonction affine si elle peut s'écrire sous la forme f(x) = ax + b avec a et b réels.
Une différence de carrés se factorise grâce à l'identité remarquable a 2 − b 2 = ( a − b ) ( a + b ). Plus généralement, une différence de puissance peut se factoriser sous la forme a n − b n = ( a − b ) × (∑ k =0 n −1 a n −1− k b k ).