Lors d'un test statistique, il faut bien comprendre qu'on n'est jamais sûr à 100% du résultat. Il y a toujours un risque de se tromper. L'erreur de première espèce alpha correspond au risque de rejeter l'hypothèse nulle Ho alors qu'elle est vrai : c'est un « faux positif ».
La statistique de test compare vos données avec celles attendues d'après l'hypothèse nulle. La statistique de test sert à calculer la valeur de p. Une statistique de test mesure le degré de correspondance entre un échantillon de données et l'hypothèse nulle.
Test unilatéral : test statistique pour lequel on prend comme hypothèse alternative l'existence d'une différence dont le sens est connu. Test bilatérale : test statistique pour lequel on prend, comme hypothèse alternative, l'existence d'une différence, dans un sens ou l'autre.
Pour les données qui suivent une loi normale, nous privilégions toujours les tests paramétriques. C'est à dire le test T de Student et l'ANOVA. Si cette condition n'est pas remplie, nous devons utiliser des tests non paramètriques tel que le test de Wilcoxon, test de Mann Whitney ou un Kruskal Wallis.
La formulation des hypothèses, le choix du test statistique et l'analyse des résultats sont les étapes les plus importantes.
Dans la première partie, nous avons discuté de l'importance des tests statistiques. Pourquoi faire des tests statistiques ? Parce qu'ils vous indiquent si la disparité des résultats d'une expérience est purement due au hasard, ou si elle révèle une différence significative entre les individus étudiés.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...); Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
Les tests non paramétriques sont donc utilisés lorsque le niveau d'échelle n'est pas métrique, que la distribution réelle des variables aléatoires n'est pas connue ou que l'échantillon est simplement trop petit pour supposer une distribution normale.
Il s'agit du test de Kruskal-Wallis, mesure de l'association entre deux variables qualitatives. Le croisement de deux questions qualitatives produit un tableau que l'on désigne généralement par « tableau de contingence ».
Un test de Student peut être utilisé pour évaluer si un seul groupe diffère d'une valeur connue (test t à un échantillon), si deux groupes diffèrent l'un de l'autre (test t à deux échantillons indépendants), ou s'il existe une différence significative dans des mesures appariées (test de Student apparié ou à ...
La science des statistiques est utile pour choisir objectivement un échantillon, faire des généralisations valables à partir des observations faites sur l'ensemble d'échantillons, mais aussi pour mesurer le degré d'incertitude, ou la fiabilité, des conclusions tirées.
3.1 Généralités. La statistique a pour objet de recueillir des observations portant sur des sujets présentant une certaine propriété et de traduire ces observations par des nombres qui permettent d'avoir des renseignements sur cette propriété.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
On peut classer la plupart des méthodes d'échantillonnage en deux grandes catégories : l'échantillonnage aléatoire et l'échantillonnage représentatif. Un échantillon aléatoire est, comme son nom l'indique, un échantillon d'individus sélectionnés au hasard, conçu pour représenter l'ensemble de la population.
L'analyse statistique consiste donc à collecter et à interpréter des données dans le but d'identifier des modèles et des tendances.
Son objectif peut se résumer de la façon suivante : dégager, à partir de données observées sur quelques individus d'une population, des résultats valables pour l'ensemble de la population.
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.
La validité est utilisée pour examiner la précision avec laquelle un élément est mesuré par une méthode. Si une méthode particulière mesure effectivement tout ce qu'elle prétend et que les résultats générés correspondent étroitement aux valeurs du monde réel, la méthode est considérée comme valide.
Pour ce faire, il faut prendre 50 vis de chaque ligne de production et de chaque équipe et en mesurer le poids. L'ANOVA à deux facteurs permet de déterminer si le poids moyen des vis des trois lignes de production et des deux équipes est significativement différent l'un de l'autre.