Déterminer les abscisses des points d'intersection avec la courbe. On cherche ensuite, si elles existent, les abscisses des points d'intersection de C_f et de la droite d'équation y=a. Ces abscisses sont les antécédents de a par f.
Lire les antécédents sur un graphe
On trace une droite horizontale à partir de la valeur de l'image dont on cherche l'antécédent. On note toutes les intersections entre cette droite et le graphe de f. En chaque intersection, on trace une droite verticale et on lit la valeur de l'intersection avec l'axe des abscisses.
Dans l'alphabet, on a dans l'ordre : x, y et z. y est après x, c'est l'image de x. x est avant y, c'est l'antécédent de y.
L'antécédent de " 1 ": Pour déterminer l'antécédent de " 1 ", il suffit de résoudre l'équation: f ( x) = 1. Calcul du discriminant = b2 - 4 ac: = 22 - 4 x 1 x 1 = 0.
La représentation graphique d'une fonction f est l'ensemble des points de coordonnées (x;f(x)). Autrement dit, l'antécédent x se lit sur l'axe des abscisses et l'image f(x) se lit sur l'axe des ordonnées.
Quels sont les antécédents de 3 par la fonction f ? L'antécédent de 3 par f est 1. L'antécédent de 3 par f est 3. L'antécédent de 3 par f est 0.
1. Fait antérieur sur lequel on appuie un raisonnement, une conclusion : Invoquer un antécédent. 2. Élément qui précède et auquel se rapporte un pronom relatif (par exemple homme dans l'homme dont je parle).
Il s'agit de trouver le nombre x tel que h(x) = –10. Or, h(x) = 5x donc 5x = –10 ; soit x = = –2. L'antécédent de –10 par h est –2.
Pour résoudre l'équation f\left(x\right) = \alpha, si l'on connaît plusieurs expressions f\left(x\right), il peut être utile de sélectionner l'expression la plus appropriée (celle qui rend la résolution de l'équation f\left(x\right) = \alpha la plus simple possible). Le seul antécédent de 4 par f est -2.
Exemple : Pour déterminer des antécédents éventuels du nombre 4 par la fonction affine définie sur par f ( x ) = 4 x + 3 , on résout l'équation ( E ) f ( x ) = 4 .
Pour déterminer l'image d'un nombre à l'aide d'une formule, il suffit de remplacer x x x par la valeur du nombre dans la formule. Pour déterminer un antécédent d'un nombre à l'aide d'une formule, il faut remplacer f ( x ) f(x) f(x) par la valeur du nombre dans la formule puis trouver une valeur de x x x qui la vérifie.
Pour lire graphiquement f '(0), on lit le coefficient directeur de la tangente en B. Pour cela, on peut : lire les coordonnées d'un autre point C de la droite et calculer le coefficient directeur . Ainsi, f '(0) = –1,5.
Image, antécédent
Remarque : par une fonction, une même image peut avoir plusieurs antécédents. Par contre, chaque antécédent n'a qu'une seule image.
1- Lire les informations apportées par les axes. 2- Repérer sur la courbe les points remarquables (maximum, minimum, point d'inflexion). 3- Découper la courbe en plusieurs parties. 4- Justifier chaque partie par des données chiffrées qui indiquent comment évolue le paramètre mesuré par rapport au paramètre qui a varié.
L'image de 0 par la fonction f est 0.
Dans une fonction, l'antécédent est le nombre x qui sert de base au calcul de l'image y par la fonction f.
On dit que 36 est l'image de 6 par la fonction f. Cette image est unique. On dit aussi que 6 est l'antécédent de 36 par la fonction f.
Quel est l'antécédent de -11 par la fonction f ? L'antécédent de −11 par la fonction f est 2.
On donne la fonction affine f d'expression f(x)=x+3. Quelle est l'image de 3 par la fonction f ? L'image de 3 par la fonction f est 6.
Le nombre 0 admet donc deux antécédents par ℎ qui sont 1 et −1.
Images et antécédents
Si une fonction f est affine et n'est pas constante, alors tout nombre admet un antécédent et un seul par la fonction f. On dit que le nombre réel x est l'antécédent du nombre réel f ( x ) f(x) f(x)
Déterminer les abscisses des points d'intersection avec la courbe. On cherche ensuite, si elles existent, les abscisses des points d'intersection de C_f et de la droite d'équation y=a. Ces abscisses sont les antécédents de a par f.
« Qui », « que », « dont » et « où » sont tous des pronoms relatifs.
Le pronom personnel à la 3e personne est généralement un pronom de reprise, c'est-à-dire qu'il reprend une information mentionnée dans le texte. On appelle cette information antécédent.
L'image de 1 par f vaut 1² = 1, soit f(1 )= 1.