L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
Selon l'hypothèse nulle, il n'y a souvent pas de différence ou de lien perceptible entre les variables étudiées. Elle indique l'absence de relation entre les éléments pertinents ou d'effet entre eux. Les chercheurs créent l'hypothèse nulle qui servira de point de référence pour la comparaison de leurs résultats.
Si H0 est vraie, alors la kinésithérapie est inefficace, le taux de guérison sera identique dans les 2 groupes. Si H1 est vraie, alors la kinésithérapie est efficace ou délétère, le taux de guérison sera différent entre les 2 groupes.
L'hypothèse alternative notée H1 est la négation de H0, elle est équivalente à dire « H0 est fausse ». La décision de rejeter H0 signifie que H1 est réalisée ou H1 est vraie. Remarque : Il existe une dissymétrie importante dans les conclusions des tests.
Il existe différents types d'hypothèses. Nous distinguons quatre types : l'hypothèse descriptive, l'hypothèse explicative en termes de facteurs, l'hypothèse explicative en termes de typologie, l'hypothèse explicative en termes de processus.
Il y a toujours deux hypothèses qui sont exactement opposées l'une à l'autre ou qui affirment le contraire. Ces hypothèses opposées sont appelées hypothèse nulle et hypothèse alternative et sont abrégées par H0 et H1.
C'est une idée que l'on va chercher à prouver par la suite. → L'hypothèse doit répondre au problème et être affirmative. Exemple : HYPOTHESE : Les feuilles mortes tombés en automne ont disparu l'été suivant PEUT-ETRE car les êtres vivants de la forêt les ont mangées.
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.
Pour prendre une décision, choisissez le niveau de significativité α (alpha), avant le test : Si p est inférieur ou égal à α, rejetez H0. Si p est supérieur à α, ne rejetez pas H0 (en principe, vous n'acceptez jamais l'hypothèse H0, mais vous vous contentez de ne pas la rejeter)
La règle de décision est la suivante: si la valeur calculée du critère statistique est inférieure à la valeur critique de la distribution de F, au seuil de signification voulu, on accepte l'hypothèse nulle, à savoir que les deux échantillons sont prélevés dans des populations de même variance.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
En statistiques, un test, ou test d'hypothèse, est une procédure de décision entre deux hypothèses. Il s'agit d'une démarche consistant à rejeter ou à ne pas rejeter une hypothèse statistique, appelée hypothèse nulle, en fonction d'un échantillon de données.
une hypothèse ne doit pas servir à démontrer une vérité évidente ; elle doit plutôt laisser place à un certain degré d'incertitude ; une hypothèse doit être vérifiable. L'information disponible devient donc un critère déterminant dans la vérification de l'hypothèse ; une hypothèse doit être précise.
on calcule la probabilité observée : p=kn. p = k n . on calcule l'écart du test : t=|p−p0|√p(1−p)√n.
Niveau de signification
Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.
L'hypothèse est en effet une réponse provisoire à la question préalablement posée. Elle tend à émettre une relation entre des faits significatifs et permet de les interpréter. Pour que la recherche soit valable, les hypothèses doivent cependant être vérifiables, plausibles et précises.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
Une erreur de type I survient dans un test d'hypothèse statistique lorsqu'une hypothèse nulle, qui est en réalité vraie, est rejetée par erreur. Les erreurs de type I sont également connues sous le nom de « faux positifs », elles représentent la détection d'un effet positif alors qu'il n'existe aucun effet en réalité.
L'erreur de type I ou « α » est la probabilité de rejeter H0 alors qu'en fait, H0 est vrai (une « fausse alarme »). L'erreur de type II ou « β » est la probabilité d'accepter H0 alors qu'en fait, H0 est faux (« manquer le bateau »).
La significativité statistique, ou seuil de signification, désigne le seuil à partir duquel les résultats d'un test sont jugés fiables. Autrement dit, ce seuil détermine la confiance dans la corrélation entre un test effectué et les résultats obtenus.
Synonyme : postulat, prémisse, principe, théorie.
1 . Émile Durkheim, Les règles de la méthode sociologique, op.
Une hypothèse causale prédit que les changements de la variable dépendante sont le résultat de la manipulation de la variable indépendante.
Une bonne hypothèse suit généralement le modèle “Si… alors… parce que…” Voici un exemple : “Si [vous modifiez la variable indépendante], alors [vous prévoyez ce qui se passera avec la variable dépendante], parce que [expliquez la logique ou la base de votre prédiction].”
Prendre en compte les données du sujet et vos connaissances. 2. Rédiger une phrase à la forme affirmative 3. Formuler l'aspect provisoire de cette phrase en utilisant un verbe conjugué au présent ou au conditionnel « je suppose que / il se pourrait que … » ou en utilisant l'adverbe « peut-être ».