En astrophysique, un trou noir est un objet céleste si compact que l'intensité de son champ gravitationnel empêche toute forme de matière ou de rayonnement de s'en échapper.
Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
La force d'attraction d'un trou noir est incroyablement puissante. Résultat : tout ce qui s'en approche d'un peu trop près est systématiquement aspiré : des roches, de la poussière et même des étoiles toutes entières. Rien ne résiste à la gravité d'un trou noir.
Généralement, un trou noir absorbe toute la matière qui s'approche "trop près" de lui. A l'heure actuelle, plusieurs théories sont proposées pour expliquer ce que devient cette matière: → Certains scientifiques émettent l'hypothèse que toute la matière absorbée passe dans un autre univers que le nôtre.
Les trous noirs jouent aujourd'hui un rôle crucial non seulement en astrophysique mais aussi en physique des particules, et en particulier dans les théories essayant d'unifier la relativité générale et la physique quantique.
Un quasar est composé de trois grandes parties principales : le trou noir supermassif ,comportant la quasi-totalité de la masse du quasar (de quelques millions à quelques dizaines de milliards de fois la masse du Soleil).
Les trous noirs sont très froids : leur température s'approche du zéro absolu (0 kelvin ou -273,15 degrés Celsius). Plus un trou noir est massif, plus il est froid.
On estime ainsi que les trous noirs résidus d'étoiles disparaîtront d'ici 1065 ans (le chiffre 1 suivi de 65 zéros), les trous noirs supermassifs dans 1090 ans et les plus massifs dans 10100 ans.
Un trou blanc, ou fontaine blanche, est un objet hypothétique qui comme son nom l'indique est l'opposé du trou noir. En effet, tandis qu'en théorie rien ne peut s'échapper d'un trou noir, d'après les cosmologistes, rien ne peut pénétrer dans un trou blanc. De la matière et de l'énergie en sont éjectés en permanence.
Alors qu'en 1905 il avait démontré qu'une horloge embarquée dans un véhicule en mouvement « retardera » par rapport à celle restée immobile, en 1915, il prédisait que, tout comme la vitesse, le champ gravitationnel généré par un corps massif ralentissait les horloges ; et cela d'autant plus que l'horloge était proche ...
Baptisé "NGC 1277", le trou noir serait - heureusement - situé à 220 millions d'années-lumière de nous, dans une galaxie dix fois plus petite que notre Voie Lactée. Sa gueule, disproportionnée, serait onze fois plus large que l'orbite de la planète Neptune autour du Soleil.
Ta question est difficile et simple à la fois. Elle est simple si l'on répond brièvement : "Il n'y a rien derrière l'univers. L'univers est l'ensemble. Il n'y a pas d'espace vide en dehors de l'univers."
Un trou blanc, aussi appelé fontaine blanche, est un objet théorique susceptible d'exister au sens où il peut être décrit par les lois de la relativité générale, mais dont l'existence dans l'Univers est considérée comme hautement spéculative.
La découverte de ce trou noir avait suscité un grand intérêt chez scientifiques et les médias. L'objet, situé à 1000 années-lumière du Système solaire, était considéré comme le trou noir le plus proche de la Terre. Cette place reste donc à celui de V616 de la Licorne, distant de 3300 années-lumière.
Selon la théorie de la gravité quantique à boucles, les trous blancs seraient le destin ultime des trous noirs. La matière qui s'est effondrée dans un trou noir ressort alors de l'astre lorsque celui-ci se transforme en trou blanc.
Autre information de taille : le trou noir lui-même mesure 38 milliards de kilomètres, soit 250 unités-astronomiques, la distance entre le Soleil et la Terre. Le disque de gaz qui l'entoure est environ 100 fois plus grand. Des chiffres vertigineux, devant une image difficile à décrypter pour les impies.
Dès lors, suite à l'effondrement gravitationnel, un horizon sphérique de rayon égal au rayon de Schwarzschild se forme. C'est donc principalement l'apparition d'un horizon des événements qui définit un trou noir. Cette solution confère donc une géométrie sphérique aux trous noirs.
Un trou blanc, que l'on appelle aussi fontaine blanche, serait, en quelque sorte, le contraire d'un trou noir : si un trou noir est un endroit de l'espace où la matière est attirée, et disparaît, un trou blanc, serait, au contraire, un endroit où la matière « apparaîtrait », et d'où elle jaillirait, un peu à la manière ...
Il faudrait comprimer le Soleil jusqu'à un rayon de trois kilomètres pour qu'il devienne un trou noir, et descendre jusqu'à neuf millimètres pour que la Terre subisse le même sort. De fait, plus un trou noir est petit, plus la compression nécessaire à sa création est importante.
La Voie Lactée
Notre galaxie, un vaste groupe de 250 milliards d'étoiles auquel appartient le Soleil et toutes les étoiles que nous pouvons distinguer dans le ciel. La Voie Lactée est une galaxie "spirale" formée de plusieurs bras.
Selon la théorie de l'évolutionthéorie de l'évolution stellaire, lorsqu'une étoile possède une masse dépassant les 20 à 25 masses solaires, son explosion finale sous forme de supernova SN II peut conduire à la formation d'un trou noir qui est alors qualifié de stellaire.
Un trou noir comporte deux parties. Au centre se trouve la singularité, c'est-à-dire le point infinitésimal où est concentrée toute la matière de l'étoile. Autour de la singularité se trouve une région de l'espace où rien ne peut échapper à sa gravité, pas même la lumière.
La théorie standard veut que ce soit à l'occasion de collisions entre galaxies, avec fusion, que la coalescence de leurs trous noirs centraux se produise. Ce serait-là le processus le plus efficace pour obtenir les trous noirs supermassifs de plusieurs milliards de masses solaires aujourd'hui observés.
C'est confirmé : un disque se forme lorsqu'un trou noir supermassif gobe une étoile. Lorsqu'un trou noir supermassif avale une étoile malchanceuse, un disque d'accrétion se forme.
On appelle « horizon cosmologique » la première lumière émise par le Big Bang il y a 13,82 milliards d'années.