1 (un) est l'entier naturel représentant une entité seule. « Un » fait quelquefois référence à l'unité, et « unitaire » est quelquefois utilisé comme un adjectif dans ce sens (par exemple, un segment de longueur unitaire est un segment de longueur 1).
Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l'égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.
Définition 2 : Un nombre naturel est premier s'il est plus grand que 1 et qu'il n'est divisible que par 1 et par lui-même. » « Donc 1 n'est pas premier », ai-je conclu.
Le 1 ici 1=1 n'est pas un chiffre c'est un nombre et pour le nombre 1 1=1 est faux. Car on n'arrive pas à faire une quantité identique d'un seule 1 pour deux 1 identique. Mais pour 2 ou 3 c'est possible.
Un chiffre : c'est quoi ? Il n' existe que dix chiffres: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Ce sont des signes , des symboles qui servent à écrire tous les nombres, comme les lettres de l'alphabet servent à écrire tous les mots du dictionnaire.
Le zéro a été inventé aux alentours du Ve siècle en Inde. Le mathématicien et astronome Brahmagupta dessine le vide, le néant, le rien. Il invente un signe pour l'absence et ouvre le chemin de la représentation de ce qui n'était pas représentable jusque-là.
Dans le cas du nombre 1, les deux diviseurs 1 et lui-même ne sont pas distincts : ce sont les mêmes.
La preuve de 1+1 = 2 de Alfred North Whitehead et Bertrand Russell apparait à la page 362 du livre Principia Mathematica. Ce livre fait 674 pages. Il faut donc construire des éléments mathématiques pendant 362 pages avant d'arriver à la preuve de ce résultat simple : 1 + 1 = 2.
Re : 1+1 = 3
Comme le dit Shiho, c'est une démonstration totalement fausse (et bien connue des gens qui veulent blaguer un peu).
Si n est égal à 1, n ne possède qu'un seul diviseur : 1. Tout entier n strictement supérieur à 1 possède au moins deux diviseurs 1 et n qui sont appelés ses diviseurs triviaux.
Les nombres parfaits sont des entiers égaux à la somme de leurs diviseurs. Ainsi, 6 se divise par 2, 3 et 1. En additionnant 2, 3 et 1, on arrive à 6 ! Même chose pour 28, somme de 1 + 2 + 4 + 7 + 14.
Un nombre premier est donc un nombre dont ses seuls diviseurs sont 1 et lui-même. Citons quelques nombres premiers : 2, 3, 5, 7, 11, 13, 17, 19, … et quelques plus grands : 22 091, 9 576 890 767 ou encore ce géant : 95 647 806 479 275 528 135 733 781 266 203 904 794 419 563 064 407.
Zéro est un chiffre et un nombre. Son nom a été emprunté en 1485 à l'italien zero, contraction de zefiro, issu du latin médiéval zephirum, qui représente une transcription de l'arabe ṣĭfr, le vide (qui en français a également donné chiffre). Le zéro est noté sous forme d'une figure fermée simple : 0.
Le 7 décembre 2018, un record été battu, celui du plus grand nombre premier connu. 282 589 933 − 1, qui comporte près de 25 millions de chiffres en écriture décimale. On doit cette performance (la vérification est en cours) au Gimps, le Great Internet Mersenne Prime Search.
Réponses. Non, on ne peut pas démontrer que 1+1=2. C'est effectivement une convention que les mathématiciens ont choisit pour s'entendre. En fait, il faut plutôt considérer que 2 est le nombre qui vaut 1+1.
Elle fait partie de l'ensemble des nombres imaginaires. Ainsi le nombre i est défini comme suit : i est un nombre dont le carré est -1, algébriquement : i2 = -1.
c'est incroyable ce qu'on peut lire. pour ce qui est de 1+1=2, c'est quelque chose qu'on a montré en algèbre. De fait, on définit des règles simples, et à partir de là, on pourrait dire que 2 est le résultat de l'element neutre de la seconde loi du groupe, composé avec lui même par la première loi du groupe.
Le zéro n'est plus seulement un symbole utilisé pour marquer un vide, mais il devient un nombre à part entière. En 628, dans un traité d'astronomie appelé le Brahma Sphuta Siddhanta, Brahmagupta (598 ; 660) définira le zéro comme la soustraction d'un nombre par lui-même (a - a = 0).
Dans la pièce Dom Juan (1665) de Molière, on peut lire : « Je crois que deux et deux sont quatre, Sganarelle, et que quatre et quatre sont huit. » (acte III, sc. 1), ce à quoi Sganarelle, le valet du libertin répond : « Votre religion, à ce que je vois, est donc l'arithmétique ? »
Les nombres complexes se révèlent très tôt utiles dans la résolution des équations polynomiales, ainsi que l'expose Bombelli dès 1572. Ils permettent également aux mathématiciens de s'intéresser dès 1608 au théorème fondamental de l'algèbre. Ils sont utilisés dès le début du XVIII e siècle dans le calcul intégral.
Propriétés. Le nombre 2 possède beaucoup de propriétés en mathématiques. 2 est le plus petit nombre premier ; c'est le seul pair. Malgré sa primalité, deux est aussi un nombre hautement composé, car il possède plus de diviseurs que 1.
Bonsoir, Les multiples de 11 sont: 110,121,132, 143, 154, 165, 176, 187, et 198 =)
De 0 à 100 par exemple, les nombres premiers sont au nombre de 25 : 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.