Si l'écart-type est faible, cela signifie que les valeurs sont peu dispersées autour de la moyenne (série homogène) et inversement (série hétérogène).
Un écart type important indique que les données sont dispersées autour de la moyenne. Cela signifie qu'il y a beaucoup de variances dans les données observées. À l'inverse, plus les valeurs sont regroupées autour de la moyenne, plus l'écart type est faible.
Une valeur d'écart type élevée indique que les données sont dispersées. D'une manière générale, pour une loi normale, environ 68 % des valeurs se situent dans un écart type de la moyenne, 95 % des valeurs se situent dans deux écarts types et 99,7 % des valeurs se situent dans trois écarts types.
Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
L'écart-type est utile quand on compare la dispersion de deux ensembles de données de taille semblable qui ont approximativement la même moyenne. L'étalement des valeurs autour de la moyenne est moins important dans le cas d'un ensemble de données dont l'écart-type est plus petit.
La variance (ou fluctuation) est la moyenne arithmétique des carrés des écarts à la moyenne. L'écart-type, noté , est la racine carrée de la variance.
L'écart-type sert à mesurer la dispersion, ou l'étalement, d'un ensemble de valeurs autour de leur moyenne. Plus l'écart-type est faible, plus la population est homogène.
Pour calculer l'écart-type pour un échantillon, utilisez les formules de cette catégorie : STDEV. S, STDEVA et STDEV. 2. Pour calculer l'écart-type pour une population entière, utilisez les formules de cette catégorie : STDEV.
L'écart type, habituellement noté s lorsqu'on étudie un échantillon et σ lorsqu'on étudie une population, est défini comme étant une mesure de dispersion des données autour de la moyenne.
On effectue leur différence. Exemple 1 : Calculons la moyenne de la série des notes de Pierre : 4 • 9 • 12 • 13 • Somme des valeurs : 4 + 9 + 12 + 13 = 38 • Effectif total : 4 (il y a 4 valeurs) • Moyenne : 38 : 4 = 9,5 La moyenne de cette série est de 9,5. C'est comme si Pierre avait obtenu 4 fois la note 9,5.
La moyenne est calculée comme la somme des valeurs d'une série divisée par le nombre de valeurs dans cette série. La médiane divise, quant à elle, la série étudiée en deux groupes égaux.
La statistique est la discipline qui étudie des phénomènes à travers la collecte de données, leur traitement, leur analyse, l'interprétation des résultats et leur présentation afin de rendre ces données compréhensibles par tous.
La médiane est considérée comme le second quartile (Q2). L'écart interquartile est la différence entre le quartile supérieur et le quartile inférieur. L'écart semi-interquartile est la moitié de l'écart interquartile. Lorsque le jeu de données est petit, il est simple de trouver les valeurs des quartiles.
L'écart-type est dans la même unité de mesure que les données. Même avec peu d'habitude, il est donc assez simple à interpréter. En revanche, la variance a davantage sa place dans les étapes intermédiaires de calcul que dans un rapport.
La colonne Pourcentage cumulé montre la fréquence cumulée, divisée par le nombre total d'observations (25, dans ce cas). On multiplie ensuite le résultat par 100. Ce calcul donne le pourcentage cumulé de chaque intervalle.
L'écart type est une mesure de la dispersion des valeurs par rapport à la moyenne (valeur moyenne). Important : Cette fonction a été remplacée par une ou plusieurs nouvelles fonctions proposant une meilleure précision et dont les noms reflètent mieux leur rôle.
La fonction ECARTYPE. PEARSON part de l'hypothèse que les arguments représentent l'ensemble de la population. Si vos données ne représentent qu'un échantillon de cette population, utilisez la fonction ECARTYPE pour en calculer l'écart type. S'il s'agit d'échantillons de taille importante, les fonctions ECARTYPE.
Vous pouvez calculer le coefficient de variation dans Excel en utilisant les formules d'écart type et de moyenne. Pour une colonne de données donnée (c'est-à-dire A1:A10), vous pouvez entrer : “=stdev(A1:A10)/moyenne(A1:A10)) puis multiplier par 100.
Le cas de deux échantillons indépendants :
Pour comparer deux moyennes, il faut habituellement employer le test «T» de Student, qui suppose la normalité des distributions et l'égalité des variances (test paramétrique), hypothèses invérifiables avec des effectifs faibles.
La variance est utilisée dans le domaine de la statistique et de la probabilité en tant que mesure servant à caractériser la dispersion d'une distribution ou d'un échantillon. Il est possible de l'interpréter comme la dispersion des valeurs par rapport à la moyenne.
Il s'agit de comparer une moyenne observée à une moyenne théorique (μ). Si la valeur absolue de t (|t|) est supérieure à la valeur critique, alors la différence est significative. Dans le cas contraire, elle, ne l'est pas.
L'incertitude-type donne un regard critique sur une série de mesures. On définit avec elle des conventions d'écriture, elle permet d'établir un intervalle de confiance. L'écart relatif permet de comparer le résultat de la mesure obtenu à une valeur attendue.
Différents estimateurs de l'écart type sont généralement utilisés. La plupart de ces estimateurs s'expriment par la formule : Sn – 1 (ou S′ ) est l'estimateur le plus utilisé, mais certains auteurs recommandent d'utiliser Sn (ou S).
La moyenne est utilisée pour des distributions normales, ayant un faible nombre de valeurs aberrantes. La médiane est généralement utilisée pour retourner la tendance centrale des distributions asymétriques.