Quand on peut passer d'une série de nombres à une autre, en multipliant ou en divisant par un même nombre, c'est une situation de proportionnalité.
Situations de proportionnalité
Deux grandeurs (ou listes de nombres) sont proportionnelles lorsque l'on peut obtenir la deuxième à partir de la première en la multipliant par un même nombre, que l'on appelle coefficient de proportionnalité.
Pour savoir si deux grandeurs sont proportionnelles, on peut faire le test suivant : lorsqu'on multiplie une grandeur par un nombre, si l'autre est multipliée par le même nombre, alors ces deux grandeurs sont proportionnelles.
Définition : Deux grandeurs sont proportionnelles si on peut calculer les valeurs de l'une en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité. Exemple : La masse d'un morceau de viande et son prix.
1. Se dit d'une quantité qui reste dans son rapport de proportion avec une autre : La somme gagnée est proportionnelle au travail. 2. Qui est déterminé par une proportion, une relation à quelque chose d'autre : Retraite proportionnelle.
Reconnaître une proportionnalité
A et B sont de grandeur et k un nombre , si A=k×B alors on dit que A est proportionnel à B et k est le coefficient de proportionnalité.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Deux grandeurs (ou deux suites de nombres) sont dites proportionnelles si l'on peut passer de l'une à l'autre en multipliant par un même nombre non nul.
Deux grandeurs sont proportionnelles si, lorsqu'une grandeur augmente, l'autre augmente dans la même proportion. Cela signifie qu'elles ont le même multiplicateur.
Une situation de proportionnalité est représentée graphiquement dans un repère par des points alignés avec l'origine du repère. Réciproquement, si une situation est représentée graphiquement dans un repère par des points alignés avec l'origine du repère, alors c'est une situation de proportionnalité.
Un tableau est de proportionnalité si pour passer de la première ligne à la seconde ligne, on multiplie toujours par le même nombre, ce nombre est alors appelé coefficient de proportionnalité. On dira que les deux grandeurs, correspondant à chaque ligne, sont proportionnelles.
Un tableau traduit une situation de proportionnalité lorsque l'on obtient les nombres de la deuxième ligne en multipliant les nombres correspondants de la première ligne par un même nombre. (Dans cet exemple ce nombre est 2,5 car 5/2 = 2,5 ; 7,5/3 = 2,5 ; 10/4 = 2,5 ; …).
Un tableau de proportionnalité caractérise une situation de proportionnalité. Il contient les valeurs de deux grandeurs proportionnelles. C'est donc un tableau dans lequel on obtient les nombres d'une ligne en multipliant les nombres de l'autre ligne par le coefficient de proportionnalité.
Pour trouver une quatrième proportionnelle, on écrit les produits en croix égaux, c'est-à-dire : 24 × 12 = 15 × x. On considère l'égalité suivante : \frac{9}{8} = \frac{x}{10}. Quelle est la valeur du nombre x ? Les produits en croix sont égaux, donc 90 = 8 × x ou encore 90 ÷ 8 = x soit x = 11,25.
Propriété : Dans un tableau de proportionnalité, il y a égalité des produits en croix. Si a c b d est un tableau de proportionnalité, alors a b = c d , donc a × d = b × c. Tout graphique dont les points sont alignés avec l'origine du repère, représente une situation de proportionnalité.
Calculer un produit en croix : la liste des étapes
les reporter dans un tableau de proportionnalité, tracer une diagonale entre les deux valeurs connues, multiplier les deux valeurs connues, diviser le produit par la troisième valeur connue.
En mathématiques, une proportion est une relation d'égalité entre deux rapports ou deux taux. Pour former une proportion, les deux rapports ou les deux taux doivent être équivalents.
Deux grandeurs sont proportionnelles, si les valeurs de l'une s'obtiennent en multipliant les valeurs de l'autre par un même nombre appelé coefficient de proportionnalité.
On peut également trouver les chiffres manquants d'un tableau de proportionnalité en utilisant le produit sur une colonne. Ainsi pour passer de la colonne 1 à 2, il faut multiplier par 3. Si on multiplie la première colonne par 3, on obtient 3, qui est bien le résultat de la seconde colonne.
Il faut prendre la moyenne fournie et le multiplier par le nombre de données composants cette moyenne et ensuite soustraire un à un les données constituant la moyenne.
Quatrième proportionnelle : propriété
Un tableau de proportionnalité étant donné, si on connaît 3 des nombres du tableau alors on peut toujours déterminer le 4ème. Ce 4ème nombre est appelé : quatrième proportionnelle.
Autres méthodes Autres méthodes • Il suffit de contrôler que les propriétés de la proportionnalité sont respectées : linéarité, rapports, égaux, écarts, produit en croix, ordre et propriété graphique. Si une seul de ces propriétés n'est pas respectée, alors la suite n'est pas proportionnelle.
Si les points d'une représentation graphique sont alignés entre eux et avec l'origine d'un repère, alors ces points représentent une situation de proportionnalité. Les points de la représentation graphique A ne sont pas alignés, donc ce n'est pas une situation de proportionnalité.
23. Le chiffre manquant est 5, car après 234 il y a 235. 24.