L'erreur ou le risque de première espèce α constitue le risque de rejeter l'hypothèse nulle (H0) alors que celle-ci est vraie. La valeur α est choisie en fonction du degré de certitude que l'on souhaite obtenir. Généralement, la valeur 0,05 est utilisée pour obtenir un résultat avec un risque de 5% d'erreur.
La mauvaise décision : On suppose qu'H0 est fausse alors qu'en réalité H0 est vraie : c'est le risque α. On suppose qu'H0 est vraie alors qu'en réalité H0 est fausse : c'est le risque β.
Une erreur de type I survient dans un test d'hypothèse statistique lorsqu'une hypothèse nulle, qui est en réalité vraie, est rejetée par erreur. Les erreurs de type I sont également connues sous le nom de « faux positifs », elles représentent la détection d'un effet positif alors qu'il n'existe aucun effet en réalité.
Cela s'articule habituellement autour de l'hypothèse nulle (H0): si on accepte l'hypothèse nulle, l'hypothèse alternative (H1) est infirmée; inversement, si on rejette l'hypothèse nulle, l'hypothèse alternative est confirmée.
H0 est opposée à une hypothèse appelée hypothèse alternative, notée H1 ou Ha. Souvent, l'hypothèse alternative est celle à laquelle l'utilisateur souhaite aboutir. Elle implique une notion de différence (différence entre moyennes par exemple). Si les données ne vont pas assez à l'encontre de H0, H0 n'est pas rejetée.
La probabilité de commettre une erreur de 1ère espèce est représentée par α, qui désigne le seuil de signification que vous définissez pour le test d'hypothèse. Un niveau d'α de 0,05 indique que vous êtes disposé à avoir 5 % de chances de rejeter l'hypothèse nulle à tort.
L'hypothèse selon laquelle on fixe à priori un paramètre de la population à une valeur particulière s'appelle l'hypothèse nulle et est notée H0. N'importe quelle autre hypothèse qui diffère de l'hypothèse H0 s'appelle l'hypothèse alternative (ou contre-hypothèse) et est notée H1.
Les chercheurs peuvent rejeter l'hypothèse nulle en faveur d'une autre hypothèse si les données contredisent l'hypothèse nulle et montrent une différence ou un lien significatif.
La règle de décision est la suivante: si la valeur calculée du critère statistique est inférieure à la valeur critique de la distribution de F, au seuil de signification voulu, on accepte l'hypothèse nulle, à savoir que les deux échantillons sont prélevés dans des populations de même variance.
Définitions. Un test paramétrique est un test pour lequel on fait une hypothèse paramétrique sur la loi des données sous H0 (loi normale, loi de Poisson...). Les hypothèses du test concernent alors les paramètres de cette loi. Un test non paramétrique est un test ne nécessitant pas d'hypothèse sur la loi des données.
H0 est fausse
On distingue la réalité et la décision (ou évaluation) que l'on prend sur cette réalité. Dans la réalité, quand H0 (hypothèse nulle) est vraie c'est qu'il n'y a pas -objectivement ou réellement- d'effet. Quand H0 est fausse, c'est qu'il y a bien -objectivement ou réellement- un effet.
On appelle risque béta le risque de conclure à l'absence de différence: en thérapeutique, cela revient à rejeter un traitement efficace. On peut aussi lire risque de 1ére espèce ou de type I, et risque de deuxième espèce ou de type II.
Lorsque l'un des effectifs théoriques est inférieur à 5 ou lorsque les sommes marginales du jeu de données réel sont très déséquilibrées, il est préférable de se fier au test exact de Fisher.
Le test T est une statistique inférentielle utilisée pour évaluer les différences entre les moyennes de deux groupes. Le test T est généralement utilisé lorsque les ensembles de données suivent une distribution normale et peuvent avoir des variances inconnues.
Une erreur de type II survient dans un test d'hypothèse statistique lorsque l'hypothèse nulle est acceptée par erreur. Les erreurs de type II sont également connues sous le nom de « faux négatifs », elles représentent l'échec de détection d'un effet positif alors qu'il existe.
Niveau de signification
Si la valeur p calculée est inférieure à cette valeur, l'hypothèse nulle est rejetée, sinon elle est maintenue. En règle générale, on choisit un niveau de signification de 5 %. alpha < 0,01 : résultat très significatif. alpha < 0,05 : résultat significatif.
Soit p>0,05: la différence n'est pas significative, on ne peut pas conclure à une différence. Soit p≤0,05: la différence est significative, le risque pris est précisé, sa valeur est appelée degré de signification.
L'hypothèse nulle notée H0 est l'hypothèse que l'on désire contrôler : elle consiste à dire qu'il n'existe pas de différence entre les paramètres comparés ou que la différence observée n'est pas significative et est due aux fluctuations d'échantillonnage. Cette hypothèse est formulée dans le but d'être rejetée.
Test unilatéral, ou bilatéral
Lorsque l'hypothèse nulle consiste à tester l'égalité de la valeur du test avec une valeur donnée, le test est bilatéral.
Un test est dit statistiquement significatif lorsque le risque quantifié de se tromper, nommé p-valeur, est inférieur à un niveau de signification alpha. Pour être plus précis, la valeur-p est la probabilité d'obtenir une donnée aussi extrême sous l'hypothèse nulle.
(1) définir l'hypothèse nulle, notée H0, à contrôler ; (2) choisir une statistique pour contrôler H0 ; (3) définir la distribution de la statistique sous l'hypothèse « H0 est réalisée » ; (4) définir le niveau de signification du test α et la région critique associée ; (5) calculer, à partir des données fournies par l' ...
Le principe des tests d'hypothèse est de poser une hypothèse de travail et de prédire les conséquences de cette hypothèse pour la population ou l'échantillon. On compare ces prédictions avec les observations et l'on conclut en acceptant ou en rejetant l'hypothèse de travail à partir de règles de décisions objectives.
Une erreur dans la conclusion d'une recherche qui survient lorsque le chercheur rejette comme étant fausse son hypothèse de recherche H0 alors qu'elle est vraie dans la population.