Dans un repère du plan, un vecteur peut être défini par ses coordonnées (on dit aussi ses composantes) : son abscisse et son ordonnée sont mesurées par les nombres correspondant au chemin parcouru dans le sens positif ou négatif pour aller, parallèlement aux axes du repère, de son origine à son extrémité.
Définition d'un vecteur
Un vecteur est un objet mathématique que l'on représente graphiquement sous forme d'une flèche. En effet, un vecteur est défini par sa longueur (longueur du segment), sa direction (position, orientation de la flèche) et son sens (vers la droite ou la gauche).
Un vecteur u → = A B → est représenté par une flèche. Le point initial s'appelle l'origine du vecteur. Le point final s'appelle l'extrémité du vecteur. Le nom du vecteur est noté (ou non) au dessus de la flèche qui représente le vecteur.
On appelle vecteur normal de (P) tout vecteur (non nul) orthogonal à tous les vecteurs directeurs du plan. Généralement, on peut obtenir un vecteur normal de deux façons différentes : en faisant le produit vectoriel de deux vecteurs directeurs non colinéaires du plan; à partir d'une équation cartésienne du plan.
Les vecteurs directeurs permettent d'étudier le parallélisme de deux droites. Théorème : Deux droites sont parallèles si, et seulement si, leurs vecteurs directeurs sont colinéaires. Il existe beaucoup de couples de vecteurs directeurs du plan.
Pour montrer qu'une droite (d) est orthogonale à un plan (P), il suffit de montrer qu'un vecteur directeur de (d) est colinéaire à un vecteur normal de (P). Et réciproquement : Si (d) est orthogonale à (P) alors : tout vecteur directeur de (d) est colinéaire à un vecteur normal de (P).
Propriété Le vecteur (-b\: ; a) est un vecteur directeur de la droite d'équation ax + by + c = 0. Logique Réciproquement, si le vecteur (-b \:; a) est un vecteur directeur de d, alors une équation cartésienne de d est ax + by + c = 0 (avec c à déterminer).
On connaît l'équation de la droite
Soit ( O , ı → , ȷ → ) un repère du plan et une droite d'équation a x + b y = c , où , et sont des nombres réels donnés. Alors les vecteurs u → ( − b a ) et u ′ → ( b − a ) et tout vecteur qui leur est colinéaire, sont des vecteurs directeurs de la droite .
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point.
Si sont deux vecteurs non-colinéaires du plan P, le vecteur est normal au plan P si et seulement si est orthogonal aux vecteurs . Dans un repère orthonormal, tout plan P a une équation de forme ax + by + cz + d = 0 avec a, b et c non-nuls et le vecteur est normal à P. P est le plan d'équation est normal à P.
Conséquence : Pour démontrer que deux plans sont parallèles, il suffit de montrer que deux vecteurs non colinéaires de l'un des plans sont respectivement colinéaires à deux vecteurs non colinéaires de l'autre.
Étymologiquement, colinéaire signifie sur une même ligne : en géométrie classique, deux vecteurs sont colinéaires si on peut en trouver deux représentants situés sur une même droite. sont parallèles. Cette équivalence explique l'importance que prend la colinéarité en géométrie affine.
Un vecteur est un arthropode, groupe comprenant les insectes et les arachnides, qui transmet un agent pathogène : un virus, une bactérie ou un parasite. Il acquière cet agent pathogène en se nourrissant sur un hôte puis le transmet à d'autres individus.
Vocabulaire Vecteur : objet mathématique représenté par un segment fléché dont les caractéristiques sont : le point d'application, la direction, le sens et la norme (dite aussi valeur ou intensité).
un vecteur est un objet mathématique qui est caractérisé par sa direction, son sens, sa norme. Plus concrètement, on peut considérer un vecteur comme une translation. Par exemple, l'image du point A par le vecteur AB est le point B . De même l'image du point B par la translation de vecteur BC est le point C.
Un point M appartient au plan P si et seulement si il existe des réels k et k' tels que . On dira alors que les vecteurs et sont des vecteurs directeurs du plan. La donnée de deux vecteurs non colinéaires d'un plan permet aussi de définir ce que l'on appelle la direction du plan.
Pour calculer la norme d'un vecteur, il faut utiliser la formule ‖ v → ‖ = v x 2 + v y 2 . Pour calculer les coordonnées d'un vecteur, nous utilisons la formule A B → = ( x B − x A y B − y A ) . Pour maîtriser le calcul vectoriel, il convient de faire de nombreux exercices.
Le vecteur nul a une longueur égale à 0, mais n'a ni direction, ni sens.
On rappelle que deux droites sont parallèles si elles ont le même vecteur directeur. Comme les deux droites sont parallèles, elles ont le même vecteur directeur. On peut donc utiliser le vecteur directeur de la droite donnée pour ⃑ 𝑑 dans l'équation vectorielle de la droite recherchée.
1°) Tracer la droite (D) passant par A(–1,2) et de vecteur directeur et en écrire une équation cartésienne. On place le point A, et on applique le vecteur en ce point. Reste à tracer la droite (D) passant par A ayant pour direction celle de .
L'équation cartésienne d'un plan est du type ax + by + cz + d = 0 avec (a ;b ;c) les coordonnées d'un vecteur normal du plan . On procède en deux étapes : D'abord déterminer un vecteur normal au plan Ensuite déterminer d . une valeur pour cette variable et on en déduit les deux autres .
Si les plans ont 2 points d'intersection, la droite passant par ces 2 points appartient aux 2 plans. Si les plans ont 3 points d'intersection non alignés: ils sont confondus.
Deux droites sont orthogonales si leurs parallèles respectives passant par un même point sont perpendiculaires. Si une droite (d) est orthogonale à deux droites sécantes du plan P, alors elle est orthogonale au plan P.
Une équation cartésienne de droite est une équation de la forme ax+by+c=0. Remarque : Il existe une infinité d'équations cartésiennes d'une même droite. Propriété : Si une droite a pour équation cartésienne ax+by+c=0 alors un vecteur directeur de cette droite a pour coordonnées (−b;a).