Selon du Sautoy, l'astronome et mathématicien de l'Antiquité Brahmagupta est le premier à avoir employé le zéro. « Le texte de Brahmagupta intitulé Brahmasphutasiddhanta et écrit en 628 après J. -C.
Le zéro a été inventé plusieurs fois. Tout d'abord par les Babyloniens pour montrer une absence dans l'écriture d'un nombre comme dans 102 où le zéro signifie l'absence de dizaines. On nomme ce zéro, le zéro de position. De façon indépendante, il a été réinventé par les Mayas, un peuple d'Amérique centrale.
Le zéro, tout comme les autres chiffres, n'ont pas été inventés ou découverts par les Arabes, mais par les Indiens. En revanche, ce sont les Arabes, excellents intermédiaires, qui ont diffusé ces chiffres dans toute l'Europe au cours du Xème siècle.
Évolution du glyphe
Le zéro a été inventé vers le V e siècle en Inde. L'astronome et mathématicien Brahmagupta dessine le vide, le néant, le rien et il invente alors un signe pour l'absence, donc ouvrant le chemin de la représentation à ce qui n'était pas représentable et quantifié jusque-là.
Le système décimal, fondé sur les chiffres 0 à 9, est bien né en Inde. Il a été introduit à Bagdad, au début du IXe siècle, par le mathématicien Al-Khwarezmi.
Les chiffres (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) et le système décimal (selon leur place dans un nombre, ces chiffres sont des unités, des dizaines, des centaines…) ont été inventés par les Indiens. Au 9e siècle, les Arabes trouvent que ces chiffres facilitent beaucoup les calculs et ils les diffusent dans le monde entier.
Les axiomes de base des mathématiques d'aujourd'hui sont les axiomes donnés par deux mathématiciens qui s'appelaient Zermelo et Fraenkel. L'ensemble des axiomes qu'ils ont donné s'appelle la théorie ZF et sont à la base de la théorie des ensembles. Un des axiomes de cette théorie est le suivant: Axiome 1.
Au XIIe siècle, le mathématicien indien Bhaskara parvient à établir que 1/0 = l'infini. Il démontre ainsi, la relation qui existe entre le vide et l'infini. Au IXe siècle, les Arabes emprunteront aux Indiens le zéro, le mot sunya devenant sifr.
0! = 1. puisque par convention, le produit vide est égal à l'élément neutre de la multiplication. Cette convention est pratique ici car elle permet à des formules de dénombrement obtenues en analyse combinatoire d'être encore valides pour des tailles nulles.
On appelle nombre premier tout entier naturel qui n'admet que deux diviseurs distincts positifs : lui-même et 1. Les nombres 0 et 1 ne sont pas des nombres premiers. En effet, 0 a une infinité de diviseurs et 1 n'a que lui-même pour diviseur positif. 2, 3, 5, 11, 31 sont des nombres premiers.
Quel est le plus petit nombre entier? C'est une question un peu délicate. Plusieurs gens diraient zéro, car c'est l'équivalent de rien. Les nombres entiers, cependant, peuvent s'aventurer dans le domaine du négatif, et donc -1 est plus petit que 0.
Un chiffre important n'existe pas dans la numérotation en chiffres romains. Il s'agit du 0. Il n'y a tout simplement pas de symbole pour le représenter.
De l'italien zero , altération de zefiro , issu du latin médiéval zephirum , lui-même de l'arabe صفر , ṣifr (« vide »), lui-même calque du sanskrit शून्य , śūnya.
Pourquoi 0 puissance 0 est égal à 1 ? Tout nombre non nul élevé à la puissance 0 donne 1 par convention. Mais 0^0 est une forme indéterminée. Par exemple la limite de x^x est de la forme 0^0 quand x→0 (sans atteindre 0).
Tout d'abord, le chiffre 0 s'écrit “zero” en anglais et on le prononce “zi ro” (car la lettre E dans l'alphabet anglais, c'est souvent le son “i” !). À noter : en anglais britannique, et dans un registre plutôt soutenu, zéro peut aussi se traduire par “nought” (prononcez “not“).
9 (neuf) est l'entier naturel qui suit 8 et qui précède 10. C'est le plus haut nombre à un chiffre dans le système décimal.
On dit que le zéro est un nombre cardinal, représentant l'ensemble vide. C'est le plus petit nombre entier naturel, et également un élément neutre, le seul à ne pas avoir d'inverse : il est à la fois positif et négatif.
L'invention du zéro a également créé une nouvelle manière plus précise de décrire les fractions. Ajouter des zéros à la fin d'un nombre augmente sa grandeur ; ajouter des zéros au début de ce nombre, après la virgule, la diminue. Placer infiniment des nombres à droite de la virgule correspond à une précision infinie.
En réalité 0⁰ est indéterminé. On aurait tendance à croire que la limite est 1 ce qui est une 'erreur'. En effet, lorsque l'on étudie la limite de la fonction x^x quand x tend vers 0+ et 0-, on obtient dans les deux cas une limite égale à 1. Il serait alors tentant de conclure mais ça n'est pas si simple.
0 est le chiffres des unités.
Zéro. En français, le nombre zéro est considéré tantôt comme étant à la fois positif et négatif, tantôt comme n'étant ni positif, ni négatif.
L'Antiquité et l'invention des maths
-C., vont faire de cette discipline plus qu'un outil, un idéal de pensée. C'est généralement à Thalès de Milet que l'on accorde la paternité de la géométrie, et le début des mathématiques grecques.
À partir du IXe siècle, la civilisation islamique a emprunté à l'Inde de nouveaux signes pour écrire les chiffres de 0 à 9. Le mathématicien al-Khwarizmi est le premier à les décrire.
Pourquoi 1 + 1 donne 2 alors qu'il y a 11? Parce que la numération occidentale est une numération de position. Le 11 dont tu parles, c'est pour le premier 1, le nombre de dizaines, et pour le 2e, le nombre d'unités.
Pourquoi 2 n'est pas un nombre premier ? - Quora. Un nombre premier est un nombre entier strictement positif qui n'admet que deux diviseurs , lui mème et 1. Le nombre 2 répond parfaitement à cette définition.Il n'est divisible que par2 et 1.