En 1934, Ernest Rutherford réalise la première réaction de fusion en laboratoire (entre atomes de deutérium).
Mais les conditions expérimentales ne permettaient pas d'exclure une origine extérieure non maîtrisée à cette énergie qui semblait excédentaire. Le terme de « fusion froide » apparaît en 1956 dans un article du New York Times décrivant le travail de Luis W. Alvarez sur la catalyse par muon.
Un peu d'histoire
La fission nucléaire a été découverte par l'Allemand Otto Hahn et son assistant Fritz Strassmann avec la contribution d'une physicienne autrichienne, Lise Meitner. Pile Zoé, premier réacteur expérimental français. Quand on casse un atome, cela dégage une énergie énorme.
Un technicien de General Fusion travaille sur le système d'injection de plasma de l'un des réacteurs de la société.
Les réacteurs à fusion du futur ne produiront pas de déchets nucléaires à longue période et haute activité, et la fusion du cœur du réacteur est pratiquement impossible.
Aucun déchet radioactif de haute activité à vie longue : Les réacteurs de fusion nucléaire ne produisent pas de déchets radioactifs de haute activité à vie longue.
200 millions de degrés : la température nécessaire pour réaliser la fusion nucléaire. D'autre part, pour augmenter la probabilité de fusion, on a recours à des isotopes. (atomes ayant le même nombre de protons. Ils constituent avec les neutrons le noyau de l'atome.
Cette réaction nécessite une température très élevée, comme celle que l'on trouve au cœur des étoiles. On peut y parvenir en bombardant les isotopes d'hydrogène par un faisceau laser très intense. L'inconvénient de cette méthode est qu'elle est très liée aux applications militaires.
La fusion nucléaire est une réaction physique qui se déroule au cœur des étoiles : des noyaux atomiques fusionnent, dégageant l'énergie à l'origine de la lumière et de la chaleur qu'émettent les étoiles.
Julius Robert Oppenheimer, né le 22 avril 1904 à New York et mort le 18 février 1967 à Princeton (New Jersey, États-Unis), est un physicien américain qui s'est distingué en physique théorique puis comme directeur scientifique du Projet Manhattan.
Les premières bombes
Le premier essai nucléaire est effectué le 16 juillet 1945 par les États-Unis ; il s'agit d'une bombe A d'une puissance de 19 kt . Les bombes A utilisées pour les bombardements d'Hiroshima et de Nagasaki sont de puissance comparable.
Les États-Unis sont, en 1945, le premier État à faire exploser une bombe nucléaire. Depuis, ils ont assemblé environ 66 500 têtes nucléaires dont plus de 60 000 ont été démantelées.
C'est la fission nucléaire. La seconde consiste à unir des noyaux d'atomes différents. On parle alors de fusion nucléaire.
L'élément du tableau périodique ayant la plus haute température de fusion est le tungstène, 3 410 °C , ce qui en a fait un excellent choix pour les lampes à incandescence par exemple. Toutefois, le carbone (graphite) reste solide jusqu'à 3 825 °C (point de sublimation).
Ces réactions ne se déclenchent que si la température et la pression sont suffisamment élevées pour que deux protons épluchés de leur électron donc de charge positive, fusionnent. Ceci limite leur champ d'action aux régions les plus centrales d'une étoile comme le Soleil.
Bombardée de neutrons, la couverture en béryllium du tokamak d'Iter va se désagréger rapidement — la durée de vie de ce métal dans un réacteur de fusion serait de cinq à dix ans 11. Il faudra non seulement remplacer ses modules régulièrement, mais évacuer après chaque expérience les poussières de béryllium.
Lors des travaux de mise au point de la fusion contrôlée, les ingénieurs et les chercheurs se heurtent à trois difficultés majeures : 1) la température, 2) la densité et 3) le confinement.
De très grandes quantités d'énergie sont libérées par le processus de fusion nucléaire. Pouvoir reproduire ce phénomène sur Terre permettrait en théorie de satisfaire définitivement les besoins énergétiques de l'humanité. C'est précisément l'enjeu majeur de la recherche sur la fusion nucléaire « contrôlée ».
ITER est le plus grand projet scientifique mondial des années 2010. Il contiendra le plus grand réacteur à fusion nucléaire du monde lors de son achèvement en 2025.
Le 15 septembre 2022, le Conseil ITER a nommé Pietro Barabaschi le quatrième* directeur général d'ITER Organization. Le nouveau directeur général prendra ses fonctions au mois d'octobre.
La chaleur produite par ces réactions de fission va servir à produire de la vapeur, laquelle va faire tourner une turbine électrique. Ce point est commun à toutes les centrales. Pour arrêter le réacteur, c'est-à-dire pour stopper la réaction en chaîne, il faut agir sur la production des neutrons, ou les capturer.
Le 30 décembre 2021, les chercheurs et ingénieurs de l'Institut de Physique des Plasmas de l'Académie des Sciences à Hefei en Chine, ont réussi à maintenir un plasma de fusion à une température de 70 millions de degrés pendant plus de 17 minutes (1056 secondes) dans le tokamak EAST.
Deuxième « segment » de la chambre à vide finalisé La deuxième « section » de 40 degrés de la chambre à vide ITER sera finalisé au mois d'avril 2022. Construit autour du secteur n°1(7) fourni par la Corée, ce « sous-assemblage » a été finalisé plus vite que le premier grâce aux enseignements tirés.
Le combustible nucléaire pour la fusion est composé de deux isotopes de l'hydrogène le deutérium et le tritium. Le deutérium se trouve en abondance dans l'eau. Le tritium n'existe sur Terre qu'a l'état de trace.