Au centre d'un trou noir se situe une région dans laquelle le champ gravitationnel et certaines distorsions de l'espace-temps (on parle plutôt de courbure de l'espace-temps) divergent à l'infini, quel que soit le changement de coordonnées. Cette région s'appelle une singularité gravitationnelle.
Un trou noir possède un champ gravitationnel, si intense qu'aucune matière qui y pénètre ne peut plus en ressortir, y compris la lumière. C'est pourquoi les trous noirs sont des objets optiquement invisibles.
Généralement, un trou noir absorbe toute la matière qui s'approche "trop près" de lui. A l'heure actuelle, plusieurs théories sont proposées pour expliquer ce que devient cette matière: → Certains scientifiques émettent l'hypothèse que toute la matière absorbée passe dans un autre univers que le nôtre.
Un trou noir est une région de l'espace dont le champ gravitationnel est si intense qu'il empêche toute forme de matière ou de rayonnement de s'en échapper. Un trou noir est créé après la mort d'une étoile très massive.
– C'est cet effet de dilatation du temps gravitationnelle qui est poussé à l'extrême au voisinage des trous noirs, de telle sorte que, du point de vue d'un observateur distant, le temps semble s'y arrêter complètement.
Quand la lumière passe à côté, au lieu d'aller sur une ligne droite, elle va être courbée. C'est ce qu'appelle une géodésique de l'espace -temps. Plus le trou noir est compact, plus il est massif, plus la trajectoire de la lumière va être déviée. Cela marche pour tous les corps, y compris pour la Terre ou le Soleil.
Les trous noirs sont en effet des objets très petits à l'échelle du cosmos. Leur taille est proportionnelle à leur masse, à raison d'un rayon de trois kilomètres par masse solaire. Ainsi, un trou noir stellaire possède un rayon de l'ordre d'une dizaine de kilomètres.
L'énergie noire compterait pour plus de 68% du total masse-énergie de l'Univers (avec environ 5% de matière ordinaire sous forme d'astres, de gaz et de poussière, et 26% de matière noire, un autre mystère).
Un trou noir a une vitesse de libération plus grande que la vitesse de la lumière. La lumière ne peut donc jamais sortir d'un trou noir. Comme aucun objet dans l'univers ne peut dépasser la vitesse de la lumière, aucun objet ne peut atteindre la vitesse de libération d'un trou noir : rien ne peut donc s'en échapper.
Il y a ensuite les trous noirs de quelques masses solaires qui sont créés suite à l'effondrement gravitationnel d'une étoile massive. On parle de trous noirs stellaires. Enfin, les trous noirs au centre des galaxies ont une masse pouvant atteindre plusieurs milliards de fois celle du Soleil.
Il y a donc une limite à la concentration de la matière dans un trou noir, qui est de 10-35 mètres. À partir de cette limite, la géométrie de l'espace-temps s'inverse, permettant à la matière, qui avant se contractait, d'être expulsée. Dès lors, un trou blanc « se forme à la fin de la vie [du] trou noir.
Ces trous noirs se forment par effondrement d'une étoile en fin de vie. Lorsqu'une étoile a transformé en son cœur tout son hydrogène en hélium, la gravité devient plus intense que la pression qui repousse la matière vers l'extérieur, et la matière s'effondre sur elle-même sous l'effet de son propre poids.
Le trou noir M87* a une masse de l'ordre de 6,5 × 109 masses solaires et un rayon de 19 milliards de kilomètres ; son diamètre est donc de 38 milliards de kilomètres, ou 35 heures-lumière ; comme il est situé à 53,5 millions d'années-lumière de la Terre, son diamètre apparent serait de 15,5 μas (microsecondes d'arc).
Un trou blanc, aussi appelé fontaine blanche, est un objet théorique susceptible d'exister au sens où il peut être décrit par les lois de la relativité générale, mais dont l'existence dans l'Univers est considérée comme hautement spéculative.
Lorsque la masse commence à devenir très faible, la température augmente rapidement et l'évaporation atteint une vitesse foudroyante. Finalement, le processus se termine avec une explosion qui marque la disparition du trou noir.
Étonnamment, ils ne le sont pas! À l'intérieur des trous noirs et autour d'eux, le champ gravitationnel est tellement puissant que rien ne parvient à s'échapper, ni même la lumière. Cela signifie que les trous noirs n'émettent aucune onde lumineuse et n'ont donc aucune couleur.
Finalement, des trous noirs isolés peuvent être détectés au moyen de l'effet de «lentille gravitationnelle». Les objets massifs dévient en effet la lumière. Si un trou noir passe exactement sur la ligne qui relie un observateur et une étoile lointaine, l'étoile apparaîtra soudainement plus brillante.
D'après notre compréhension actuelle de l'Univers, celui-ci serait infini. Cela signifie qu'il n'y a pas d'« après l'espace » : l'espace n'a pas de limites... Bien qu'infini, l'espace devient de plus en plus grand : on dit qu'il est en expansion.
À ce jour, aucune donnée scientifique ne permet de dire si l'Univers est fini ou infini. Certains théoriciens penchent pour un Univers infini, d'autres pour un Univers fini mais non borné. Un exemple d'Univers fini et non borné serait l'espace se refermant sur lui-même.
« Personne ne connaît la taille exacte de l'univers, car nous ne pouvons en voir le bout – si tant est qu'il y en ait un. Tout ce que nous savons, c'est que l'univers visible s'étend sur une distance d'au moins 93 milliards d'années lumière.
Pas n'importe lequel : il s'agit du trou noir supermassif situé au centre de la galaxie Messier 87 (M87), nommé M87*. Ce colosse de 6,5 milliards de fois la masse du Soleil évolue au cœur de sa galaxie, à 55 millions d'années-lumière de la Terre.
Un trou noir n'a aucune puissance. Il n'émet rien, ne dégage aucune énergie, sa température est au zéro absolu.
Trou noir supermassif
TON 618, en tant que quasar, est supposément un disque d'accrétion de gaz extrêmement chaud, tourbillonnant autour d'un gigantesque trou noir au centre d'une galaxie.
L'espace-temps n'est pas à trois dimensions, mais à quatre (trois d'espace et une de temps) et toutes les quatre sont déformées par la présence d'une masse.
Grâce au télescope Hubble, un trou noir vient d'être découvert à quelques encablures de notre planète après douze années de recherche. Situé à seulement 6.000 années-lumière de la Terre, il a été repéré au cœur de Messier 4, un amas globulaire dans la constellation du Scorpion.