Une hauteur dans un triangle est la droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Dans ce cas, on dit que (AH) est la hauteur issue de A ou que (AH) est la hauteur relative au côté [BC]. [BC] est aussi appelé la base relative à cette hauteur.
On a : Aire (ABCD) = AB × BC. Soit ABCD un parallélogramme. On appelle hauteur relative au côté [AB], la longueur du segment [AE] tracé en rouge.
Pour trouver la hauteur d'un triangle équilatéral, utilisez le théorème de Pythagore, a^2 + b^2 = c^2. Partagez le triangle en deux parties égales depuis un sommet, « c » sera la longueur du côté du triangle de départ, « a » sera la moitié de la base, et « b » correspondra à la hauteur tracée.
Définition : dans un triangle, la hauteur d'un côté est la droite qui est perpendiculaire au côté et qui passe par le sommet opposé. On dit aussi la hauteur issue d'un sommet.
La hauteur d'un triangle est une droite qui passe par un sommet du triangle et qui est perpendiculaire au côté opposé à ce sommet.
Le centre du cercle inscrit dans un triangle est le point d'intersection des trois bissectrices d'un triangle. Dans un triangle, l'hypoténuse est le plus grand côté. Une médiatrice est une droite qui passe par le milieu d'un segment et qui est perpendiculaire à ce même segment.
Les trois hauteurs d'un triangle sont concourantes en un point appelé l'orthocentre du triangle. La médiatrice d'un segment est la droite perpendiculaire à ce segment et qui passe par son milieu. Les trois médiatrices d'un triangle sont concourantes en un point qui est le centre du cercle circonscrit au triangle.
Dans un triangle, si trois lignes sont tracées en partant de chaque angle et en coupant le côté opposé à angle droit, elles se rencontrent en un point d'intersection, qui est appelé orthocentre, en géométrie.
Un nombre relatif est formé d'un signe + ou – et d'un nombre appelé distance à zéro. Exemple 1 : (+5) est un nombre relatif, son signe est + et sa distance à zéro est 5. (-3) est un nombre relatif, son signe est - et sa distance à zéro est 3.
Les trois hauteurs d'un triangle sont concourantes. Leur point d'intersection H, est nommé orthocentre du triangle. On considère l'homothétie de centre le centre de gravité du triangle et de rapport –2. Elle transforme le triangle ABC en un triangle A'B'C'.
On appelle « aire d'une figure fermée » le nombre de carrés (de coté 1 unité de longueur) nécessaire pour la remplir complètement : Exemple : Chaque petit carré mesure 1cm de coté, on dit que son aire est 1 cm carré (noté 1 cm²). La figure est composée de 9 carrés de ce type, on dit que son aire est 9 cm².
La bissectrice d'un angle est la droite qui partage un angle en deux angles de même mesure. La bissectrice d'un angle peut également être définie comme l'ensemble des points à égale distance des deux côtés de l'angle. Cette deuxième définition permet de tracer la bissectrice d'un angle avec un compas.
La hauteur du troisième côté du triangle rectangle (hypoténuse) n'a rien de particulier. Trace une droite perpendiculaire au troisième côté [ZX] et qui passe par le sommet opposé Y. Les droites (h1), (h2) et (h3) sont les 3 hauteurs du triangle rectangle.
L'aire totale, généralement notée AT, est la surface recouverte par toutes les figures formant le solide concerné. Le volume, généralement noté V, est la portion de l'espace occupée par un solide (dans un espace à 3 dimensions). Le volume se calcule en unités cubes (u3).
La hauteur d'un triangle est une droite qui passe par un sommet et qui est perpendiculaire au côté opposé. Ce côté est alors appelé la base du triangle.
La formule pour calculer l'aire d'un carré est c × c, « côté fois côté ». Ex. : un carré de 5 cm de côté a pour aire 5 × 5 = 25 cm2. La formule pour calculer l'aire d'un rectangle est L × l, « longueur fois largeur ».
Synonyme : approximatif, borné, insuffisant, limité, partiel, rudimentaire, sommaire.
1. Qui se rapporte à quelqu'un, à quelque chose, qui les concerne : Les questions relatives à l'ordre du jour. 2. Qui n'existe qu'en relation avec quelque chose d'autre, qui n'est pas indépendant : Les positions relatives des deux parties.
Les trois médianes d'un triangle sont concourantes. Leur point d'intersection est l'isobarycentre des trois sommets, souvent appelé « centre de gravité du triangle ».
En géométrie, un cercle circonscrit à un polygone est un cercle qui passe par tous les sommets du polygone. Le polygone est alors dit inscrit dans le cercle : on parle de polygone inscriptible ou parfois de polygone cyclique. Les sommets sont alors cocycliques, situés sur un même cercle.
Les 3 médiatrices d'un triangle sont les médiatrices de chacun de ses côtés. Ces 3 médiatrices se coupent en un point qui est le centre du cercle circonscrit au triangle.
Médiane : droite joignant le sommet d'un triangle au milieu du côté opposé. Médiatrice : droite passant par le milieu d'un segment et perpendiculaire à ce segment. Bissectrice : demi-droite coupant un angle en deux parties égales.
Tout point situé sur la médiatrice d'un segment se trouve à égale distance de chacune des extrémités de ce segment. C'est pourquoi les sommets du triangle se trouvent tous sur un même cercle. C'est la droite qui coupe un angle en deux angles égaux.