Un angle est formé par deux lignes qui se rejoignent ou se coupent. Chacune des lignes de l'angle est appelée côté de l'angle alors que l'endroit où les lignes se rencontrent est appelé sommet. Dans le schéma ci-dessous, A est le sommet de l'angle. Les demi-droites AB et AC forment les côtés de l'angle A.
Définitions : Un angle est une portion de plan délimitée par deux demi-droites ayant la même origine. Les deux demi-droites s'appellent les côtés de l'angle. L'origine commune des deux demi-droites s'appelle le sommet de l'angle.
Le côté opposé à un angle est celui qui est en face de cet angle. Celui des deux côtés d'un angle aigu qui est le côté adjacent est celui qui n'est pas l'hypoténuse.
Côté adjacent d'un angle dans un triangle rectangle,
le côté de cet angle qui n'est pas l'hypoténuse.
Utilisation du théorème de Pythagore pour calculer la longueur d'un côté d'un triangle rectangle : Dans un triangle rectangle, le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés. Si ABC est un triangle rectangle en A, alors BC² =AB² + AC² .
Dans un triangle rectangle, le côté opposé à l'angle droit s'appelle l'hypoténuse.
La formule du cosinus d'un angle s'applique dans un triangle rectangle. Elle correspond au rapport entre la longueur du côté adjacent à l'angle (longueur collée à l'angle) et la longueur de l'hypoténuse (le plus grand côté du triangle rectangle).
1- Vocabulaire Le côté [ AC ] du triangle ABC est appelé côté adjacent à l'angle BAC. Le côté [ BC ] du triangle ABC est appelé côté opposé à l'angle BAC. Remarque * le côté opposé à ABC est le côté adjacent à BAC; * le côté adjacent à ABC est le côté opposé à BAC.
GÉOM. Côté opposé à l'angle droit dans un triangle rectangle. Le carré de l'hypoténuse est égal à la somme des carrés des deux autres côtés (Théorème de Pythagore).
Calculer . Dans le triangle ABC, on connaît déjà deux angles. Leur somme est égale à : 40 + 80 = 120°. La somme des mesures des angles d'un triangle est égale à 180°, donc : = 180 – 120 = 60°.
Ainsi donc, l'équation se présente simplifiée : a / sin(α) = c / 1 ou encore a / sin(α) = c. Trouvez l'hypoténuse en divisant la longueur du côté a par le sinus de l'angle α. Il faut opérer en deux temps : on calcule en premier sin(α), que l'on va inscrire, puis on divise la longueur a par ce résultat obtenu.
En utilisant le théorème de Pythagore : Si un triangle est rectangle, alors le carré de l'hypoténuse est égal à la somme des carrés des côtés de l'angle droit. Si ABC est un triangle rectangle en A, alors BC² = AB² + AC².
Pour mesurer un angle, on utilise un rapporteur. La plupart des rapporteurs sont gradués en degré (°) avec une double graduation : de 0 à 180° de gauche à droite sur la graduation extérieure ; et de 0 à 180° de droite à gauche sur la graduation intérieure.
L'angle nul, qui mesure 0°. L'angle plat, qui mesure 180°. L'angle plein, qui mesure 360°. L'angle saillant, qui mesure entre 0° et 180°.
Angle aigu : Angle supérieur à 0 degré et inférieur à 90 degrés. Angle droit : Angle de 90 degrés. Angle obtus : Angle entre 90 et 180 degrés. Angle plat : Angle de 180 degrés.
Théorème de Pythagore
Dans un triangle rectangle, le carré de la longueur de l'hypoténuse est égal à la somme des carrés des longueurs des deux autres côtés.
Cosinus  = Côté adjacent (noté a) / Hypoténuse (noté h).
On définit le cosinus comme étant le rapport entre le côté adjacent à l'angle par rapport à l'hypoténuse. Le sinus est le rapport entre le côté opposé à l'angle par rapport à l'hypoténuse.
cos 12° 0,978 ; cos 20° 0,94 ; cos 45° 0,707 ; cos 60° = 0,5 cos 90° = 0 ; cos 0° = 1.
Trigonométrie Exemples. La valeur exacte de cos(45°) cos ( 45 ° ) est √22 . Le résultat peut être affiché en différentes formes.
En géométrie, un triangle isocèle est un triangle ayant au moins deux côtés de même longueur. Plus précisément, un triangle ABC est dit isocèle en A lorsque les longueurs AB et AC sont égales. A est alors le sommet principal du triangle et [BC] sa base.
Un triangle rectangle est un triangle ayant un angle droit (90∘) généralement représenté par un carré noir.
Une réciproque tout aussi vraie
Elle s'énonce ainsi : si dans un triangle, le carré de la longueur d'un côté est égal à la somme des carrés des longueurs des deux autres côtés, alors ce triangle est rectangle et on appelle hypoténuse, son plus grand côté.