La médiane est le point milieu d'un jeu de données, de sorte que 50 % des unités ont une valeur inférieure ou égale à la médiane et 50 % des unités ont une valeur supérieure ou égale. Dans un jeu de données de petite taille, il suffit de compter le nombre de valeurs (n) et de les ordonner en ordre croissant.
Le nombre total d'individus constituant la population s'appelle l'effectif total. Il est noté N. La fréquence totale F est obtenue en faisant la somme des fréquences de chaque valeur.
Calculer l'effectif total
On calcule N, l'effectif total de la série statistique grâce à la formule N = \sum_{i=1}^{p}n_i. Où n_i est l'effectif associé à la valeur x_i.
Caractère statistique (ou variables statistiques) :
C'est ce qui est observé ou mesuré sur les individus d'une population statistique. Il peut s'agir d'une variable qualitative ou quantitative. Exemples : Taille, poids, salaire, sexe, profession d'un groupe donné d'individus.
L'écart-type est un outil statistique qui permet d'estimer la dispersion des valeurs par rapport à la moyenne. Plus l'écart-type a une valeur élevée, plus les données sont dispersées par rapport à la moyenne. L'unité de l'écart-type est la même que celle de la moyenne.
L'écart type – identifié par le symbole σ qui se lit sigma – représente une quantité réelle positive, parfois infinie, mesurant la répartition d'une variable aléatoire autour de sa moyenne. Le carré de l'écart type appelé « variance » calcule l'écart de chaque donnée par rapport à cette moyenne.
L'écart-type ne peut pas être négatif. Un écart-type proche de 0 signifie que les valeurs sont très peu dispersées autour de la moyenne (représentée par la droite en pointillés). Plus les valeurs sont éloignées de la moyenne, plus l'écart-type est élevé.
Distributions statistiques. X sont notées xi, l'effectif de la population ayant pour modalité xi est noté ni. Lorsque l'on distingue l'échantillon de la population, l'effectif de l'échantillon est alors noté n. Ceci n'est valable que pour les variables qualitatives ou discrètes.
Les noms de variable peuvent contenir jusqu'à 64 octets, et le premier caractère doit être une lettre ou l'un des caractères @, # ou $. Les caractères suivants peuvent être n'importe quelle combinaison de lettres, de chiffres, de caractères autres que de ponctuation et d'un point (.).
Pour rappel, la fonction factorielle s'écrit : n! . Le n est un entier naturel (un entier naturel est un nombre sans virgule et forcément positif, comme 1 ; 2 …) ; la fonction factorielle est le produit des nombres entiers strictement positifs inférieurs ou égaux à n.
Les indicateurs de tendance centrale comme la moyenne ( ̅) et la médiane ( Me ) et le mode ( Mo ) sont des mesures qui indiquent la position où semble se rassembler les valeurs de l'échantillon. Définition : C'est la somme de toutes les valeurs du caractère divisée par le nombre total des valeurs.
Il faut en repérer la source, l'auteur, la date de publication, le champ (population étudiée, date des données, lieu concernant les données). Il s'agit ensuite de comprendre les données. Pour cela, il peut être utile de repérer le total en lignes ou en colonnes. Enfin, il faut analyser les données du tableau.
La proportion de la population prenant la valeur xi est donnée par la fréquence : fi = ni n . La proportion de la population prenant une valeur inférieure ou égale `a xi est donnée par la fréquence cumulée des i premi`eres classes : Fi = f1 + f2 + ··· fi = Ni n .
En algèbre, on tente de généraliser les calculs en remplaçant très souvent les nombres par des lettres. Ces lettres se nomment des variables. Une variable peut être représentée par n'importe quelle lettre de l'alphabet. Dans ces expressions algébriques, les lettres a, b, c, y et z sont des variables.
On distingue divers types de variables selon la nature des données. Ainsi, une variable peut être qualitative ou quantitative; une variable qualitative peut être nominale ou ordinale, alors qu'une variable quantitative peut être continue ou discrète.
On distingue ainsi classiquement trois types de caractères observables, ou encore de variables : les variables nominales, les variables ordinales et les variables métriques.
Il consiste à calculer la moyenne des effectifs de chaque mois de l'année N-1. Par exemple, l'effectif 2023 d'une entreprise correspond à la moyenne des effectifs de chaque mois de l'année 2022.
La formule avec n-1 concerne l'écart type de toute la population estimé à partir d'un échantillon. Pour une petite population, on peut prendre comme échantillon la population complète et on voit bien que l'estimation n'est pas bonne.
Il s'agit d'une variable numérique. Les tests que vous pouvez utiliser sont alors le test de Student ou le test de Wilcoxon-Mann-Whitney, selon si les groupes suivent une distribution normale (en forme de cloche).
C'est la mesure de dispersion la plus couramment utilisée, de même que l'écart-type, qui correspond à la racine carrée de la variance. La variance est l'écart carré moyen entre chaque donnée et le centre de la distribution représenté par la moyenne.
En mathématiques, l'écart type (aussi orthographié écart-type) est une mesure de la dispersion des valeurs d'un échantillon statistique ou d'une distribution de probabilité. Il est défini comme la racine carrée de la variance ou, de manière équivalente, comme la moyenne quadratique des écarts par rapport à la moyenne.
Comment calculer l'écart-type
1 - On calcule la moyenne arithmétique de la série. 2 - On calcule le carré de l'écart à la moyenne de chacune des valeurs de la série. 3 - On calcule la somme des valeurs obtenues. 4 - On divise par l'effectif de la série.