Une droite graduée est une droite qui contient un point nommé
(Mathématiques) (Par métonymie) Position du point qui correspond à cette distance. (Géométrie) L'une des coordonnées rectilignes, en général horizontale, grâce auxquelles on définit la position d'un point et sa distance à l'origine.
Sur une droite graduée, l'abscisse d'un point est le nombre qui permet de repérer la position de ce point sur la droite. Dans un repère du plan, l'abscisse d'un point est l'un des deux nombres qui permet de repérer la position de ce point dans le repère. Elle se lit sur l'axe horizontal. L'autre nombre est l'ordonnée.
Définition de l'abscisse d'un point
Sur un axe gradué, on repère chaque point grâce à un nombre appelé son abscisse. Exemple : Sur l'axe gradué précédent, L'abscisse de A est 1, l'abscisse de H est 4, l'abscisse de T est 1,5 et l'abscisse de S est 6,25.
Pour trouver son abscisse, on trace une parallèle à l'axe des ordonnées ; on lit alors l'abscisse du point à l' intersection avec l'axe horizontal.
Un petit moyen mnémotechnique pour ne pas confondre abscisse et ordonnée: Ecrite en script, l'initiale de abscisse se prolonge sur l'horizontale. "Abscisse" désigne donc l'axe horizontal d'un repère. La boucle du o se prolonge verticalement, "ordonnée" désigne donc l'axe vertical d'un repère.
Lorsque l'équation de la droite est présentée sous la forme y = ax + b, l'ordonnée à l'origine est le b. On peut calculer l'abscisse à l'origine avec la formule x = -b/a.
La plus petite abscisse possible pour un point de Cf est –5 tandis que la plus grande abscisse possible est 6 : f est donc définie sur l'intervalle [–5 ; 6]. b.
"Les abscisses des points d'intersection de C_f et C_g sont les solutions de l'équation f\left(x\right)=g\left(x\right)." Les abscisses des points d'intersection de C_f et C_g sont les solutions de l'équation f\left(x\right)=g\left(x\right). On résout donc cette équation.
Points alignés
On dit que trois points ou plus sont alignés s'ils sont sur une même droite. A, B et C sont alignés car A, B et C sont sur la même droite (d).
Abscisse - Nom commun
(Mathématiques) Distance d'un point à l'origine sur une droite orientée; par métonymie, désigne la position de ce point. En géométrie et cartographie, coordonnée horizontale permettant de définir la position d'un point et sa distance à l'origine.
ORDONNÉE, subst. fém. A. − Coordonnée verticale servant à définir la position d'un point soit avec l'abscisse en géométrie analytique à deux dimensions, soit avec l'abscisse et la cote dans un système à trois dimensions.
En mathématiques un repère permet d'identifier par une liste de coordonnées chaque point d'une droite, d'un plan ou plus généralement d'un espace affine. Ce procédé fonde la géométrie analytique, dans laquelle les transformations géométriques peuvent être étudiées par leur expression.
Le nombre opposé de l'abscisse du point A est-1.
L'axe horizontal (abscisses) axe, également appelé axe des x, d'un graphique affiche des étiquettes de texte au lieu d'intervalles numériques, et offre moins d'options d'échelle que celles disponibles pour l'axe vertical (ordonnées), également appelé axe des y.
Un repère du plan est défini par trois points non alignés (O,I,J). Le point O est l'origine du repère, la droite (OI) est appelée l'axe des abscisses, la droite (OJ) est appelée l'axe des ordonnées.
y = –3 est l'équation réduite d'une droite parallèle à l'axe des abscisses. Toute droite du plan non parallèle à l'axe des ordonnées admet une unique équation réduite de la forme y = mx + p, et est la représentation graphique de la fonction affine f définie par f(x) = mx + p.
La droite 𝑦 égale zéro étant l'axe des abscisses. On peut voir que notre courbe coupe l'axe des 𝑥 en deux points: en 𝑥 égale moins un et en 𝑥 égale trois. Et puisque ces deux points se trouvent sur l'axe des 𝑥, on sait que leurs ordonnées 𝑦 sont égales à zéro.
L'abscisse du milieu d'un segment est égale à la moyenne des abscisses des extrémités. Il en est de même pour l'ordonnée. Exemple : Avec A(2 ; 1) et B(5 ; 3), le milieu M de [AB] a pour coordonnées (72 ; 2). En effet : xM=2+52=72 et yM=1+32=2.
Détermination de l'ordonnée à l'origine : Il suffit de lire l'ordonnée du point d'intersection de la droite avec l'axe des ordonnées. L'équation est de la forme y = px + d. L'ordonnée à l'origine est 1. Donc d = 1.
§ Une distance à zéro est un nombre positif ! On a OA = 3, donc la distance à zéro de 3 est 3. On a OB = 2, donc la distance à zéro de −2 est 2. On dit que deux nombres relatifs sont opposés lorsqu'ils ont la même distance à zéro et qu'ils sont de signes contraires.
Dans un plan cartésien, on peut trouver les coordonnées du point d'intersection de deux courbes (comme par exemple deux droites) en résolvant le système d'équations. Soit les droites dont les équations sont y = x – 4 et y = –2x + 5, alors : x – 4 = –2x + 5.
Abscisse à l'origine
La valeur de x pour un point (x, y) sur l'axe des abscisses (axe des x) lorsque y est égal à zéro. Voir aussi Ordonnée à l'origine.
Comment graduer les axes ? Sur les axes, placer des graduations régulières, qui facilitent la lecture (en général tous les cm ou tous les 5 cm sur du papier millimétré). Ensuite, il faut attribuer une valeur à l'unité de graduation. On choisit des valeurs simples : 1, 2, 10, 50, 100…
L'axe des x s'appelle l'abscisse du point, l'axe des y s'appelle l'ordonnée de ce point et l'axe des z s'appelle la côte de ce point.