La machine asynchrone, connue également sous le terme anglo-saxon de machine à induction, est une machine électrique à courant alternatif sans connexion entre le stator et le rotor.
Les moteurs asynchrones triphasés représentent plus de 80 % du parc moteur électrique. Ils sont utilisés pour transformer l'énergie électrique en énergie mécanique grâce à des phénomènes électromagnétiques. C'est une machine robuste, économique à l'achat et ne nécessitant que peu de maintenance.
Le principe de fonctionnement d'un moteur asynchrone repose : D'une part sur la création d'un courant électrique induit dans un conducteur placé dans un champ magnétique tournant. Le conducteur en question est un des barreaux de la cage d'écureuil ci-dessous constituant le rotor du moteur.
MOTEUR TRIPHASÉ ASYNCHRONE
Si le rotor est fermé (conducteurs en court-circuit), la tension induite, crée à son tour un courant important dans ces conducteurs. Ce courant en interaction avec le champ tournant, génère les forces électromagnétiques de Laplace (voir complément ci-dessous). Le rotor se met à tourner.
Les moteurs asynchrones triphasés cumulent de multiples avantages : ils sont simples, robustes et faciles d'entretien. Toutes ces raisons expliquent leur popularité en milieu industriel. Surtout depuis l'apparition des variateurs de fréquences permettant de faire varier leur vitesse de rotation.
Le terme asynchrone provient du fait que la vitesse de rotation du rotor de ces machines n'est pas exactement déterminée par la fréquence des courants qui traversent leur stator (voir : « Principes généraux – Glissement d'une machine asynchrone »).
Contrairement au rotor du moteur synchrone, celui du moteur asynchrone tourne moins vite. De cette façon, il n'atteint jamais la vitesse de synchronisme : il subsiste toujours un décalage entre le champ magnétique et la vitesse de rotation de l'arbre.
Une différence liée au rotor
La différence entre moteurs synchrones et asynchrones vient du rotor : le rotor des moteurs synchrones se compose d'un aimant ou électroaimant alors que celui des moteurs asynchrones est constitué d'anneaux (qui forment ce que l'on appelle la cage à écureuil).
Comparé au moteur shunt, le moteur asynchrone a l'avantage d'être alimenté directement par le réseau triphasé. Son prix d'achet est moins élevé, il est beaucoup plus robuste car il ne nécessite pratiquement pas d'entretien. Ses deux qualités fondamentales (prix et solidité) résulte du fait qu'il n'a pas de collecteur.
Il existe plusieurs types de moteurs électriques asynchrones. On retrouve d'une part les moteurs à rotor bobiné (à bagues) et d'autre part les moteurs à cage (cage à écureuil, double cage, à encoches profondes).
« Monophasé » signifie que le courant électrique ne comporte qu'une seule phase (plus un neutre). Les appareils ayant besoin de 230 V ou moins fonctionnent sans problème avec ce type d'alimentation. Le courant triphasé correspond à l'alimentation électrique que l'on retrouve dans le secteur industriel.
Le moteur triphasé est facile d'utilisation
En effet, il se branche directement sur le réseau (380V), de façon à être opérationnel très rapidement. Un atout de taille, qui le différencie des autres moteurs électriques tels que le moteur pas à pas ou encore le moteur à courant continu.
Pour déterminer si le moteur est un triphasé ou un monophasé, la façon la plus simple est celle de la mesure ohmique des enroulements. Pour cela on se sert d'un contrôleur digital dans la gamme ohmmètre à l'échelle 200 Ω . Les mesures à faire sont au nombre de 6 : 3 mesures entre U1 et V1, U1 et W1 et V1 et W1.
Un moteur asynchrone triphasé dispose de trois enroulements fixes décalés de 120° c'est le stator, ces enroulements constitués de plusieurs bobines une fois alimentée crée un champ magnétique tournant, celui-ci entraînera la partie mobile du moteur, le rotor.
Variateurs de vitesse
En effet, par leur conception les moteurs asynchrones fonctionnent à une vitesse constante déterminée notamment par le nombre de pôles dans leur bobinage, la fréquence de la tension d'alimentation et le glissement.
Le branchement d'un moteur triphasé standard avec plaques à bornes ne pose aucun problème il suffit de faire le couplage étoile pour la tension la plus haute indiquée sur la plaque signalétique ou triangle pour la tension la plus basse suivant la tension du secteur auquel sera branché le moteur.
Un moteur AC fonctionne avec du courant électrique alternatif. Le courant alternatif est un courant qui circule dans un sens puis dans l'autre. Il est mesuré en hertz (Hz), ce qui correspond au nombre de changements de sens du courant par seconde.
Le choix d'un moteur asynchrone triphasé dépend de nom- breux critères tels que : le couple résistant, l'inertie, le réseau et l'ambiance. Ce choix dépend mécaniquement de la machine à entraîner.
les machines électriques produisant une énergie mécanique à partir d'une énergie électrique sont communément appelées des moteurs.
Il s'agit de la vitesse maximale à laquelle le moteur tourne. La vitesse est relative à la fréquence de la tension d'alimentation mais également à la puissance maximale. La vitesse s'exprime en nombre de tours par minutes (tr/min) en français ou en RPM (Rotation Per Minute) en anglais.
Formule pour le calcul de la vitesse d'un moteur électrique
La vitesse d'un moteur asynchrone = fréquence (en Hz)/nombre de paires de pôles – glissement*
On la calcule en divisant la fréquence (f) par le nombre de paires de pôles du moteur électrique. On obtient alors une vitesse en tour par seconde (tr/s), que l'on multiple par 60 pour obtenir le résultat en tour par minute (tr/min). Elle s'exprime par la relation suivante : n0 = (f x 60) /p.
Les moteurs asynchrones sont habituellement alimentés au niveau du stator, et le courant est induit dans le rotor. C'est pour cette raison que l'on parle également de « moteurs ou de machines à induction ». La machine asynchrone est principalement utilisée en moteur, mais elle est parfois utilisée en génératrice.
Causes électriques : Sous-tension ou surtension, courant triphasé asymétrique, résistance d'isolement faiblissante. Impacts environnementaux : Températures ambiantes élevées, ventilation faible ou inexistante, installation en haute altitude (faible densité de l'air).