On dit qu'une matrice A est singulière s'il existe x≠0, x ≠ 0 , tel que Ax=0 A x = 0 .
En mathématiques, les matrices sont des tableaux d'éléments (nombres, caractères) qui servent à interpréter en termes calculatoires, et donc opérationnels, les résultats théoriques de l'algèbre linéaire et même de l'algèbre bilinéaire.
Quelle que soit la matrice A, si on la multiplie, à droite ou à gauche par la matrice identité de même dimension, on obtient la matrice A elle-même. Quelle que soit la matrice A, A × I = I × A = A A\times I=I\times A=A A×I=I×A=AA, times, I, equals, I, times, A, equals, A.
Une matrice scalaire est une matrice diagonale (à coefficients dans un anneau) dont tous les coefficients diagonaux sont égaux, c'est-à-dire de la forme λIn où λ est un scalaire et In la matrice identité d'ordre n.
Aujourd'hui, les matrices sont souvent utilisées dans des domaines tels que l'administration, la psychologie, la génétique, les statistiques et l'économie. Avant d'étudier les opérations associées aux matrices, débutons par l'identification et la définition des termes associés aux matrices.
1. Synonyme vieilli de utérus. 2. Synonyme de ciment.
La matrice (utérus) est l'organe du système reproducteur féminin dans lequel se développe le foetus au cours de la grossesse. La matrice est la partie de la peau située sous le corps et la racine de l'ongle.
Une matrice régulière d'ordre n est une matrice qui a le même nombre de lignes et de colonnes et son déterminant est non nul (0). Autrement dit, une matrice régulière d'ordre n est une matrice carrée à partir de laquelle on peut obtenir la matrice inverse.
On dit que A est une matrice inversible s'il existe une matrice B carrée d'ordre n vérifiant la double égalité : A B = B A = In avec In, la matrice identité d'ordre n. B est une matrice inverse si B = A-1.
Une matrice A de Mn(K) M n ( K ) est dite inversible s'il existe B∈Mn(K) B ∈ M n ( K ) tel que AB=BA=In.
Méthode n°2 : Une matrice A est inversible si et seulement si la famille formée par ses vecteurs colonnes est libre. Autrement dit, si vous remarquez une combinaison linéaire entre les vecteurs colonnes de la matrice A, alors cette famille est liée, donc elle n'est pas libre, donc A n'est pas inversible.
Une matrice réelle dont toutes les colonnes sont orthogonales deux à deux est inversible si et seulement si elle n'a aucune colonne nulle. Un produit de deux matrices carrées est inversible si et seulement si les deux matrices en facteur le sont aussi.
En algèbre linéaire et multilinéaire, une matrice symétrique est une matrice carrée qui est égale à sa propre transposée, c'est-à-dire telle que ai,j = aj,i pour tous i et j compris entre 1 et n, où les ai,j sont les coefficients de la matrice et n est son ordre.
Une matrice est une grille utilisée pour stocker ou afficher des données dans un format structuré. Il est souvent utilisé comme synonyme de table, qui contient horizontal lignes et vertical colonnes.
L'utérus, parfois aussi appelé matrice, est la partie de l'appareil reproducteur féminin dans lequel le bébé se développe. Il est situé au-dessus du vagin, entre la vessie et le rectum. Il mesure environ 7 cm de longueur et 5 cm de largeur (dans sa dimension la plus large).
Ce fut James Sylvester qui utilisa pour la première fois le terme « matrice » en 1850, pour désigner un tableau de nombres. En 1855, Arthur Cayley introduisit la matrice comme représentation d'une transformation linéaire.
Définition d'une base
Une famille de vecteurs de E est une base de E si c'est une famille à la fois génératrice de E et libre. De façon équivalente, une famille est une base de l'espace vectoriel E quand tout vecteur de l'espace se décompose de façon unique en une combinaison linéaire de vecteurs de cette base.
L'algèbre linéaire est initiée dans son principe par le mathématicien perse Al-Khwârizmî qui s'est inspiré des textes de mathématiques indiens et qui a complété les travaux de l'école grecque, laquelle continuera de se développer des siècles durant.
Les matrices jouent un rôle fondamental en algèbre linéaire, où elles fournissent un outil de calcul irremplaçable.
Si A est une matrice carrée inversible d'ordre n, alors le système d'équation dont l'écriture matricielle est AX = B admet une unique solution : X = A-1B. Exemple : Le système a pour écriture matricielle AX = B avec . Le déterminant de A est non nul, A est donc inversible.
Couple de nombres qui représentent le nombre de lignes et le nombre de colonnes d'un matrice. La dimension d'une matrice est synonyme de taille de cette matrice. Si une matrice comporte 3 lignes et 5 colonnes, on dira qu'elle est de dimension 3 par 5.