Une première possibilité est d'emporter tout le nécessaire à bord du vaisseau spatial et/ou de veiller à un approvisionnement régulier. On peut également utilise des sources sur place, particulièrement dans le cas de missions vers d'autres corps célestes. Enfin, il est possible de développer des systèmes de recyclage.
Le système russe de traitement de l'eau issue de la condensation (SRV-K) récupère la vapeur d'eau contenue dans l'air à bord de la SSI (humidité provenant de la transpiration), mais ne recycle pas l'urine comme. L'ECLSS récupère environ 90 % de l'eau utilisée par les astronautes et la transforme en eau potable.
L'air provient de bouteilles d'oxygène et d'azote transportées régulièrement par les fusées à la station ISS, car il n'y a pas d'air dans l'espace. Pour respirer, il faut reconstituer l'environnement ambiant et fabriquer de l'air artificiel.
L'eau est présente dans tout le cosmos, sous forme de glace ou de vapeur. Elle est même relativement courante à l'état de vapeur. Mais d'eau liquide, point, en dehors du système solaire où notre chère planète est la seule à jouir, au grand jour, du charme de l'eau liquide.
Par sa surface recouverte à environ 71 % par des océans, la Terre est le seul astre connu pour abriter des zones stables d'eau liquide. Par ailleurs, l'eau liquide est essentielle à tous les organismes vivants connus qui y vivent.
Les océans de Ganymède et Titan
Dans le Système solaire, c'est en fait Ganymède et Titan, respectivement plus grande lune de Jupiter (5.262 km de diamètre) et plus grande lune de Saturne (5.152 km de diamètre), qui possèdent les plus importantes quantités d'eau... surtout sous leur surface.
Dans l'Univers la température atteint -272°C
Même dans l'espace, loin de toute étoile, on ne peut pas descendre aussi bas. Le record de froid dans l' Univers est de -272 °C, au sein de la nébuleuse du Boomerang, créée par une vieille étoile en train de mourir à 5 000 années-lumière de nous.
La faute aux rayons cosmiques. Explication : ces radiations dans l'espace influent sur les télomères qui sont, comme le décrit l'Inserm , les extrémités des chromosomes, formées de paires de bases répétées et qui interviennent dans le vieillissement, le cancer et d'autres pathologies.
Au-delà de Mars, les planètes volumineuses que sont Jupiter, Saturne, Uranus et Neptune sont moins bien connues : elles contiennent en profondeur de la vapeur d'eau et des nuages de glace d'eau, récemment identifiés sur Jupiter par la sonde Galileo. Il est également probable que leurs noyaux renferment de la glace.
L'eau liquide et la vie
Rappelons que de l'eau liquide existe très vraisemblablement dans le sous-sol profond de Mars, et dans les océans sous-glaciaires d'Europe, de Ganymède, de Callisto, de Titan, d'Encelade, de Triton et de Pluton. De l'eau liquide a aussi existé à la surface de Mars dans un passé lointain.
Dans l'espace, il n'y a rien du tout, ni atmosphère ni oxygène. Personne ne peut donc y respirer. C'est pourquoi les astronautes qui travaillent à l'extérieur de la Station Spatiale Internationale doivent revêtir un scaphandre dans lequel ils reçoivent de l'air. Sur la Lune, il n'y a pas d'atmosphère.
Sur Mars, l'atmosphère est très hostile pour les organismes qui ont besoin de dioxygène pour pouvoir vivre : la pression est environ 170 fois plus faible que sur Terre, car il y a très peu de molécules gazeuses présentes.
Les astronautes utilisent une débarbouillette et une solution nettoyante sans rinçage pour se laver le corps ou les mains. Chris Hadfield montre comment les astronautes se lavent les mains en apesanteur à bord de la SSI .
C'est beaucoup plus simple : les molécules d'eau sont attirées par la gravité terrestre, comme tout le reste. Le seul moyen par lequel quelque chose pourrait s'échapper dans l'espace depuis la Terre, c'est d'avoir une vitesse supérieure à la vitesse de libération.
Mais il s'agit là d'une convention, parfaitement arbitraire : vu de l'espace, il n'y a pas de haut et pas de bas. Sur Terre, le "bas" est la direction du centre de la Terre : tous les objets sont attirés dans cette direction.
Pourquoi ? Parce que la Terre est une planète qui fonctionne en circuit fermé. Lorsqu'un litre d'eau arrive à la mer, un litre d'eau s'évapore. C'est ce que l'on appelle le cycle de l'eau.
L'eau ne peut pas s'envoler de la planète ; la molécule d'eau est trop lourde pour échapper à la gravité de la planète.
La Terre est une planète rocheuse du système solaire. Les conditions physico-chimiques qui y règnent permettent l'existence d'eau liquide et d'une atmosphère compatible avec la vie.
Les mers et océans représentent environ 96,5 % de l'eau présente dans les enveloppes externes de la Terre (surface et atmosphère), tandis que les 4 % restant correspondent principalement aux glaciers et calottes glacières, aux nappes phréatiques et à l'ensemble des autres réservoirs tels que les lacs, rivières, l' ...
Dans la nouvelle étude, l'équipe de Riess évalue la constante de Hubble à une valeur de 74,03 km/s/Mpc (kilomètres par seconde par mégaparsec), plus ou moins 1,42.
Oliver Daemen, lui, n'avait que 18 ans lorsqu'il est parti pour l'espace et pour tout dire, il n'était même pas prévu embarquer ce jour-là.
Plus de temps cumulé dans l'espace
Homme - Guennadi Padalka a cumulé 878 jours dans l'espace lors de 5 missions. Il est devenu l'homme qui a passé le plus de temps dans l'espace le 28 juin 2015 , date à laquelle il a surpassé le record de Sergueï Krikalev.
Dans un reportage signé CNN, Matt Richmond a tenté de décrire l'odeur si caractéristique de l'espace. "Les astronautes décrivent cette odeur comme un mélange de poudre (à canon), de steak très grillé, de framboises et de rhum".
Les scientifiques ont fait chuter un gaz quantique d'une tour pour dépasser le zéro absolu. Des physiciens allemands sont parvenus à produire la température la plus froide jamais enregistrée. Le zéro absolu, difficile à dépasser, est stabilisé à -273,15°C (soit 0 Kelvin).
Cela est dû à son extraordinaire masse : car le Soleil est l'objet le plus lourd du système Solaire, il en devient donc l'axe de rotation, le point central autour duquel viendront graviter les autres objets moins lourds que lui.