Pour trouver la racine carrée d'un nombre, il faut trouver quel nombre multiplié par lui-même nous donne le nombre contenu dans la racine carrée. Si tu veux trouver la racine carrée de 25, tu dois trouver quel nombre multiplié par lui-même est égal à 25.
On en tire les valeurs suivantes de √2 : √2 = 1/5 × [7 ; 14, 14, 14…], √2 = 1/29 × [41 ; 82, 82, 82…].
Ensuite, vous utilisez une formule simple : R = A + (X-A²)/2/A, ou R = B - (X-B²)/2/B, selon la proximité du carré. Exemple 1 : racine de 11. Je prends A² = 9, 11 étant plus proche de 9 que de 16, A = 3. R(11) = A + (X-A²)/2/A = 3 + (11–9)/2/3 = 3 + 1/3 = 3,333 , pour une vraie valeur de 3,317.
= √(2 x 2 x 2 x 11). Il y a plusieurs 2 et comme c'est un nombre premier, on ne peut décomposer davantage. On va pouvoir sortir une paire de 2 de dessous la racine et mettre 2 devant la racine. Réduite à sa plus simple expression, la racine donne : 2 √(2 x 11) ou encore 2 √(2) √(11).
Le résultat indiqué pour racine de 15 est 3,8729833.
→ Je calcule la racine carrée de 20 : √20 = 4,47.
racine carrée de 169 =
= 13.
Une obtention de décimales par la méthode de Newton a été illustrée en 1922, concluant que √7 vaut 2,646 « au millième près ».
La racine carrée de 9 est 3 parce que 3 × 3 (trois au carré) donne 9.
Pour simplifier un radical, il faut remplacer le radicand par un produit dans lequel au moins un facteur est un carré parfait (le plus grand possible) afin de l'extraire du radical. Par convention, on fait également disparaître les radicaux du dénominateur d'une fraction.
Pour tous nombres positifs a et b , on a : √ab=√a×√b a b = a × b Le produit des racines carrées de deux nombres positifs est égal à la racine carrée de leur produit.
Voici quelques exemples. √50 = √(25 x 2) = √(5 x 5 x 2) = 5√2. Si l'un des facteurs se termine par 25, 50 ou 75, vous pouvez au minimum sortir 5 de la racine.
Pour simplifier une fraction avec une racine carrée, nous pouvons multiplier le numérateur et le dénominateur par la conjuguée du dénominateur. Cela convertit le dénominateur en un nombre rationnel puisque ( a − b ) ( a + b ) = a − b , en vertu de la troisième identité remarquable.
Il est exact que √200 = 5√8 !
Si on "creuse" un peu plus, pour en savoir davantage sur cette racine, on peut vérifier que la racine carrée de 17 est comprise entre 4,1 et 4,2 puisque 4,12=16,4 et que 4,22=17,64.
Réécrivez 18 comme 32⋅2 3 2 ⋅ 2 . Factorisez 9 9 à partir de 18 18 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.
(pas besoin d'une calculatrice) 10 x 10 = 100, donc 10 est bien la racine carrée de 100 .
La racine carrée de 24 sera presque cinq. Sur nos cinq choix de réponse, la racine carrée de 24 correspond au plus proche de cinq.
Une racine carrée d'un nombre réel positif est un autre nombre réel dont le carré est égal à celui de ce nombre initial. Symboliquement, la racine carrée d'un nombre a est représentée par le symbole √a. Par exemple, la racine carrée de 25 est 5, car 5 x 5 = 25.
√75 = √25 × 3 = √25 × √3=5√3. Remarque. Pour simplifier la racine carrée d'un nombre il suffit donc d'écrire ce nombre sous la forme d'un produit impliquant des carrés parfaits (4 ou 25 ci-dessus).
On peut dire que 3 est la racine carrée entière du nombre 13, et de plus 13 = 3² + 4. Soit A un nombre dont on cherche la racine carrée.
Réécrivez 45 comme 32⋅5 3 2 ⋅ 5 . Factorisez 9 9 à partir de 45 45 . Réécrivez 9 9 comme 32 3 2 . Extrayez les termes de sous le radical.