A
Pour cela, dans le cas général, il faut d'abord calculer le discriminant Δ (delta), donné par la formule : Δ = b² - 4ac. Avant d'aller plus loin, voyez si vous maîtrisez convenablement ce calcul de discriminant.
Calcul du discriminant : ∆ = b2 −4ac = ( √2)2 −4(1)(1) = −2. Le discriminant est strictement négatif, la règle est donc "toujours du signe de a", c'est à dire toujours positif car a = 1.
Définition : On appelle discriminant du trinôme ax2 + bx + c , le nombre réel, noté A, égal à b2 − 4ac . Exemple : Le discriminant de l'équation 3x2 − 6x − 2 = 0 est : ∆ = (-6)2 – 4 x 3 x (-2) = 36 + 24 = 60. En effet, a = 3, b = -6 et c = -2.
+ β , où α et β sont deux nombres réels. Cette dernière écriture s'appelle la forme canonique de f. avec α = − b 2a et β = − b2 − 4ac 4a .
b=−a(x1+x2), c=ax1x2. f est bien une fonction polynôme du second degré.
Le calcul de base de l'alpha soustrait simplement le rendement total d'un investissement des rendements de la valeur de référence, sur la même période. Supposons que le rendement attendu est de 12% après un an, le taux de rendement sans risque est de 10%, le bêta est de 1,2 et la valeur de référence est de 11%.
La lettre majuscule Δ est souvent utilisée en sciences et mathématiques pour nommer une différence entre deux grandeurs, delta étant l'initiale du mot grec διαφορά (diaphorá), « différence ». L'opérateur laplacien est noté Δ ; l'opérateur nabla prend la forme d'un delta renversé, ∇.
Le signe de Δ indique le nombre de racines réelles : si Δ > 0 , alors il y a deux solutions réelles distinctes ; si Δ = 0 , alors il y a une solution réelle répétée ; si Δ < 0 , alors il n'y a pas de solutions réelles.
Δ (delta majuscule)
correspond à une variation au sens le plus général, c'est-à-dire à une différence entre deux quantités.
Calculer le discriminant d'un trinôme du second degré
On appelle le discriminant que l'on nomme delta Δ la valeur suivante : Exemple : les valeurs des coefficients du trinôme 2x2 − 3x + 5 sont égales à : a = 2, b= −3 et c = 5 et Δ = (−3)2 − 4×2×5 = 9 − 40 = −31.
le Delta est un intermédiaire de calcul qui permet de savoir si l'équation a 0, 1 ou 2 solutions. Il y aura dans la suite des cours des tas d'exemples où il sera utile de savoir résoudre ces équations (notamment en physique et chimie, mais pas seulement).
Pour cela, il faut calculer la variation absolue, c'est-à-dire faire la différence entre la valeur d'arrivée et la valeur de départ, que l'on divise par la valeur de départ, le tout multiplié par 100.
➔ Le nombre Δ = b2 - 4ac est appelé discriminant de l'équation (appellation due à Sylvester en 1851, du latin discrimen = séparation) : l'étude de son signe permet de conclure quant au nombre et aux valeurs des racines de l'équation.
Pour pouvoir résoudre une telle équation, il faut tout d'abord calculer le discriminant Δ. On le calcule. Ensuite, selon le résultat, on va pouvoir connaître le nombre de solutions qu'il y a, et les trouver s'il y en a. Si Δ < 0 , rien de plus simple : il n'y a pas de solution.
Si Δ < 0 , alors l'équation f(x)=0 n'admet aucune solution réelle. f ne peut pas s'écrire sous forme factorisée. Si Δ = 0 , alors l'équation f(x)=0 admet une unique solution x0=-b2a . Si Δ > 0 , alors l'équation f(x)=0 a deux solutions x1=-b-√Δ2a et x2=-b+√Δ2a.
−b + √Δ ) / 2a et x'' =( −b − √Δ ) / 2a. Son discriminant est égal à Δ = 5² − 4×3×7 = 25 − 84= −59, le discriminant Δ est négatif. donc l'équation 3x² + 5x + 7 = 0 n'admet aucune solution dans R.
Si > 0, l'équation f (x) = 0 a deux solutions x1 et x2 et f (x) = a(x – x1)(x – x2). On a alors le tableau de signe suivant : ax² + bx + c est du signe de a à l'extérieur des racines et du signe de – a entre les racines. Si = 0, l'équation f (x) = 0 a une seule solution x1.
Delta est la quatrième lettre de l'alphabet grec (majuscule Δ, minuscule δ).
Représenté par la lettre grecque"π", Pi est ce qu'on appelle un nombre irrationnel. C'est-à-dire qu'il ne peut pas s'écrire sous la forme d'une fraction comprenant deux nombres entiers. Si ce symbole existe depuis l'époque babylonienne, c'est le mathématicien grec Archimède qui, en 250 avant J.
Factoriser une expression, c'est transformer une somme ou une différence en un produit. Il faut donc à la base avoir au moins deux termes que l'on additionne ou soustrait. Par exemple dans 8x + 5, les deux termes sont 8x et 5. Dans 6(x+4)2 – 9, les deux termes sont 6(x+4)2 et 9.
Comment le calcule-t-on ? Ce coefficient se calcule comme le ratio de la covariance entre la rentabilité d'un portefeuille (Rp) et celle du marché (Rm), par la variance de la rentabilité implicite du marché (Rm). Sa formule est donc : beta = (Cov(Rp, Rm))/Var(Rm).
C'est la deuxième lettre de l'alphabet grec, qui correspond au « b » de notre alphabet. Elle est employée pour désigner le second élément d'une série, tandis que « alpha » désigne le premier.
Cela signifie que l'alpha est de 0,8%.