La hauteur d'un triangle équilatéral est égale à la longueur que l'on multiplie par la moitié de la racine carrée de 3.
Si, au contraire, tu as l'aire du triangle ainsi que la longueur de sa base, la formule pour trouver la hauteur du triangle est la suivante : La hauteur est égale à 2 fois l'aire du triangle divisé par la base du triangle.
Je te propose de faire la figure sur une base AB de 5 cm. puis tu fais de même en piquant sur le point B et tu traces un arc de cercle qui croise le précédent. Le point d'intersection est le point C. Ensuite, tu traces la hauteur de ce triangle, CO, sachant que AO = OB = 2,5 (le point O étant le milieu de AB).
Calculer l'aire d'un triangle quelconque ou équilatéral
S = (AB x h) / 2 = (10 x 6) / 2 = 30 cm². En effet, AB peut aussi déterminer la longueur d'un rectangle dont h déterminerait sa largeur.
La première chose à faire pour calculer la hauteur d'un triangle consiste à écrire le théorème de Pythagore, c 2 = a 2 + b 2, où c est l'hypoténuse (le côté opposé à l'angle droit).
Retenir. Un triangle équilatéral est un triangle qui possède trois côtés de même longueur : il est isocèle en chacun de ses sommets. Propriété : Un triangle équilatéral possède toujours trois axes de symétrie : ce sont les médiatrices de chaque côté.
Aire = √p(p-a)(p-b)(p-c)
Où a, b et c sont les longueurs des côtés du rectangle et où p est la moitié du périmètre du triangle.
Si c désigne la longueur d'un côté d'un triangle et h la hauteur relative à ce côté, l'aire de ce triangle est égale à (c × h) ÷ 2.
En géométrie euclidienne, un triangle équilatéral est un triangle dont les trois côtés ont la même longueur. Ses trois angles internes ont alors la même mesure de 60 degrés, et il constitue ainsi un polygone régulier à trois sommets. Tous les triangles équilatéraux sont semblables.
Le théorème de la hauteur relative à l'hypoténuse
Dans un triangle rectangle, la hauteur issue de l'angle droit (h) est moyenne proportionnelle entre les 2 segments qu'elle détermine sur l'hypoténuse (m et n).
La réciproque du théorème Pythagore dit que « si un triangle est rectangle, alors le carré de la plus grande longueur (l'hypoténuse) est égale à la somme des carrés des longueurs des deux autres côtés ». La réciproque de Pythagore permet donc de montrer si un triangle est rectangle.
Si vous connaissez la base et l'aire d'un triangle, pour trouver sa hauteur, vous devez multiplier l'aire par 2 et diviser le résultat par la base. Pour trouver la hauteur d'un triangle équilatéral, utilisez le théorème de Pythagore, a^2 + b^2 = c^2.
L'aire d'un triangle ABC, de hauteur [AH] relative à [BC] est égale à la somme des aires des triangles rectangles ABH et ACH. Or Aire (ABH) = (AH × BH) ÷ 2.
L'aire d'un triangle rectangle se calcule en multipliant sa base par sa hauteur, puis en divisant le résultat par 2. La formule à utiliser est donc : A = (b x h) / 2. En isolant la base dans cette formule, on obtient : b = (2A) / h. Il suffit donc de connaître l'aire et la hauteur pour trouver la base.
Une façon est d'utiliser la formule pour calculer l'aire d'un triangle quelconque : A = 1/2 * base * hauteur. L'autre est d'utiliser la formule trigonométrique : A = 1/2 * a * b * sin(c). La formule que tu utiliseras dépendra des données présentées.
Par exemple : Vous avez un triangle équilatéral, dont la longueur des côtés est de 5 cm. Alors : 5 x 3 = 15 cm de périmètre.
Comme on connaît les longueurs des trois côtés du triangle, on peut utiliser la formule de Héron pour déterminer son aire. Selon la formule de Héron, l'aire, 𝐴 , d'un triangle de côtés de longueurs 𝑎 , 𝑏 et 𝑐 est 𝐴 = √ 𝑑 ( 𝑑 − 𝑎 ) ( 𝑑 − 𝑏 ) ( 𝑑 − 𝑐 ) , où 𝑑 est le demi-périmètre du triangle.
Calculer la hauteur d'un triangle équilatéral
1) Calculons la mesure de la hauteur h en fonction de c. 2) Calculons sa valeur pour c = 35 cm. 1) Le triangle AHB est rectangle en H, nous pouvons appliquer le théorème de Pythagore. et de là h = √3/2 × c ≈ 0,866 × c.
Hauteur = Demi périmètre - Base
EXEMPLE 1. Un rectangle à 68 m de périmètre et 9 m de hauteur .
Le périmètre du triangle est la somme des trois côtés. Ce principe est valable pour tout type de triangle. Périmètre du triangle = Côté+Côté+Côté. P=C+C+C.
Un triangle équilatéral est un triangle dont les trois angles ont la même mesure. En notant a cette mesure et en utilisant la somme des angles d'un triangle, il vient : 3a = 180° Triangle équilatéral — Les angles d'un triangle équilatéral mesurent 60° (ou encore π⁄ 3 radians).
Propriété : Si un triangle a trois angles de même mesure,alors c'est un triangle équilatéral.
équilatéral, équilatérale, équilatéraux
Se dit d'un triangle dont tous les côtés ont la même longueur.